
HOT–Lines: Tracking Lines in Higher Order Tensor Fields

Mario Hlawitschka∗ Gerik Scheuermann∗∗

Institute for Computer Sciences
University of Leipzig
Leipzig, Germany

Figure 1: Higher order tensor glyphs and arrows indicating direction of tracking.

ABSTRACT

Tensors occur in many areas of science and engineering. Espe-
cially, they are used to describe charge, mass and energy transport
(i.e. electrical conductivity tensor, diffusion tensor, thermal con-
duction tensor resp.) If the locale transport pattern is complicated,
usual second order tensor representation is not sufficient. So far,
there are no appropriate visualization methods for this case. We
point out similarities of symmetric higher order tensors and spher-
ical harmonics. A spherical harmonic representation is used to im-
prove tensor glyphs. This paper unites the definition of streamlines
and tensor lines and generalizes tensor lines to those applications
where second order tensors representations fail.

The algorithm is tested on the tractography problem in diffu-
sion tensor magnetic resonance imaging (DT-MRI) and improved
for this special application.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
Special function approximations J.2 [Physical Sciences and En-
gineering]: Physics— [J.3]: Life and Medical Sciences—
HealthDiffusion Tensor Imaging

Keywords: Higher order tensors, spherical harmonics, ten-
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1 INTRODUCTION

Visual representation of tensors in three dimensional space plays
a crucial role in post-processing and data analysis of large-scale
finite element model simulation of physical problems. Not only
the size of the computed or measured data sets makes it impossible
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to visualize the whole data set, but also the complexity in terms of
number of values at every data point sometimes makes it impossible
to display small subsets of data.

Tensors of fixed order have a long history in scientific comput-
ing. Stress and strain tensor in mechanical and civil engineering are
described by the well known subset of symmetric second order ten-
sors. Higher tensors are known from material characterization, e.g.
the fourth order stiffness tensor Ci jkl or the so called “second order
stiffness tensor” of order six [10]. Relating visualization, higher or-
der tensors, that are tensors of order greater than two, are unknown.

Another source of tensor data is diffusion tensor magnetic reso-
nance imaging (DT-MRI), where second order tensors are used to
represent Gaussian diffusion of water molecules in human brain.
Other methods, that will be discussed in detail in section 5, use
higher order tensors to model diffusion process along neural fibers.

Many thoughts have been spent on finding optimal glyph icons
for tensor fields. A good overview is given by Hashash et al. [9].
Kindlmann [14] used superquadrics to improve visibility of di-
rectional components and shape of second order tensors glyphs.
Benger et al. [1] proposed the use of semi-transparent glyphs in
combination with volume rendering. Also, many ideas of vector
field visualization have been adopted to tensor fields, mostly us-
ing the eigenvalue-eigenvector decomposition of the matrix repre-
sentation like tensor lines [3] or adaptions of LIC [33, 23]. Some
other methods representing more of the intrinsic properties of the
tensor itself have been introduced for volume rendering [15]. To
describe the continuous geometric structure of a tensor field, tensor
lines [5, 4] have been proven to give a good representation of fea-
tures of the data. They can also be used to display topology graphs
of second-order tensor fields [11, 27, 28, 26, 34].

Adaption of most methods to higher order tensor fields fails be-
cause the existence of methods similar to the eigenvector decompo-
sition is not known for higher order tensors [18]. Despite of this,
directions of largest expansion of the tensor glyph can also be of
interest for higher order tensors.

We start by presenting the similarity between a special set of
tensors and spherical harmonics and give an example for the use
of spherical harmonic representation in tensor visualization. Ex-



tending previous concepts, we introduce a method of tracking lines
in higher order tensor fields, both unifying and generalizing the
method of streamlines and tensor lines. Using the spherical har-
monic representation, algorithm speed can be improved for sym-
metric tensor sets of even order.

In section 5, we describe the use of higher order tensors in diffu-
sion tensor imaging. There, detecting neural fibers (a.k.a. the trac-
tography problem) is an important method in understanding con-
nectivity and function of human brain. Because single fibers are
far below voxel resolution of the measured data, crossings, kissings
and T– or Y–junctions of fiber bundles present a severe problem to
most algorithms. Here, higher order tensor models can give addi-
tional information of these structures and can significantly improve
tracking in areas of low anisotropy.

2 SPHERICAL HARMONICS

The spherical harmonics Y m
l (θ ,φ) are well known as the angular

portion of the solution to Laplace’s equation in spherical coordi-
nates where azimuthal symmetry is not present [8]. As they repre-
sent the eigenfunctions of the Laplace-Beltrami operator, they can
be seen as a Fourier transform on the sphere. There are some minor
differences between notations in literature. We will use the spheri-
cal harmonic basis functions defined by

Y m
l (θ ,φ) = Xm

l (θ)eℑmφ , (1)

where

Xm
l (θ) =

[
2l +1

4π

(l−m)!
(l +m)!

]1/2
Pm

l (cos(θ)) (2)

and
Y−m

l (θ ,φ) = (−1)mY m
l
∗(θ ,φ). (3)

ℑ is the complex unit, i.e. ℑ2 =−1. l is called the rank or order and
m ∈ {−l, . . . , l} the quantum number. Here, the Condon-Shortley
phase (−1)m is already included in the associated Legendre poly-
nomials Pm

l which are related to the Legendre polynomials

Pn(z) =
1

2πℑ

∮
(1−2tz+ t2)1/2t−n−1dt (4)

by

Pm
l (x) = (−1)m(1− x2)

m
2

∂ m

∂xm Pl(x) (5)

and

P−m
l = (−1)m (l−m)!

(l +m)!
Pm

l (x). (6)

Let g ∈R3 be a vector (i.e. gi is a tensor of order one). Then g
can be written in polar coordinates as

g = gi =

 g1
g2
g3

 =

 r sinθ cosφ

r sinθ sinφ

r cosθ

 . (7)

To shorten notation a bit, we write g instead of (θ ,φ) as argument
to the spherical harmonic functions and set r = 1.

Using the scalar product of two functions f and h on the surface
of the sphere S2 defined by

〈 f ,h〉S2 =
∫

S2
f (g)h∗(g)dg, (8)

the Y m
l provide a fully orthonormal basis in the sense of

〈Y m′

l′ ,Y m
l 〉S2 = δmm′δll′ , (9)

where δmn is the Kronecker delta

δmn =
{

1 iff m = n
0 else. (10)

Any smooth complex function on the sphere can be represented
by a Laplace’s series

fα (g) =
∞

∑
l=0

l

∑
m=−l

am
l Y m

l (g), (11)

where alm are complex coefficients that can be calculated by the
spherical harmonic transformation

am
l = 〈 fα ,Y m

l 〉S2 . (12)

We only focus on real functions, thus am
l = a−m∗

l . This reduces
the number of independent coefficients needed for representation.
Furthermore Y 0

0 =
√

(4π)−1 is constant, and thus
√

4πa0
0 denotes

the average value on the sphere. Spherical harmonics of even l
are symmetric functions on the sphere and those of odd l are an-
tisymmetric functions. As we only need symmetric functions, all
coefficients of odd l are zero. This results in (l + 1)(l + 2)/2 real
coefficients needed to represent those functions of order l.

Spherical harmonics of same order l represent rotational invari-
ant subspaces. Another important property of spherical harmonics
is that gradients can be calculated analytically.

3 HIGHER ORDER TENSORS AND SPHERICAL HARMONICS

Let V be a d-dimensional vector space and V∗ its dual space. A
tensor of type (r,s) is a multilinear form

σ = σ
j1... js

i1...ir : V× . . .×V︸ ︷︷ ︸
r

×V∗× . . .×V∗︸ ︷︷ ︸
s

→R (13)

We are focusing on d = 3 and V =R3. When using an orthonormal
basis, the dual space V∗ and V can be used interchangeable and for
clarity of notation we will write all indices as lower indices.

Let ĝi be a unit vector i.e. ĝ‖ = 1 and let σi1,...,ir be a tensor of
rank r. We define a scalar function 1

fσ : S2 →R (14)

fσ (g) = σi1,...,ir · ĝi1 · . . . · ĝir (15)

on the unit sphere.
Let p = (p1, . . . , pr) be a permutation. A symmetric tensor is a

tensor, where
σ j1,..., jr = σ jp1 ,..., jpr

∀p. (16)

If σ j1,..., jr is symmetric and r even, then fσ represents the same set
of functions as the truncated Laplace’s series of spherical harmonics
of order 0 . . .r, i.e. for every σ there exists a set of coefficients am

l
with

fσ (ĝ) = fα (ĝ) = f (ĝ) (17)

and vice versa. Formulas for converting both representations ana-
lytically can be found in [22].

As spherical harmonics provide an orthogonal basis, tensors of
different pure order are orthogonal, too. Amongst others this makes
the decomposition of symmetric second order tensors in their trace
σS, which is the scalar value, and its deviator part (trace free part)
σD

i j possible.

σi j = σ
S +σ

D
i j , (18)

1According to Einstein’s summing convention we write aibi = ∑i aibi



which is evaluated as

fσi j (g) = σ
S +σ

D
i j gig j. (19)

Briefly, every symmetric tensor of arbitrary order can be written as
a Laplace’s series. This is important, because it shows that higher
order approximations of tensor data does not influence the lower
order part, and really gives additional information that is not con-
tained in any part of lower order.

In the following sections, we will refer to “tensors of pure or-
der k” when referring to tensors that provide information present in
order k only i.e. not present in any other order than k.

3.1 Generalized Tensor Glyphs

Glyphs are one of the most often used methods in visualization.
Single glyphs can be used as interactive probes in the data set or to
display additional information on advanced visualization methods.
A commonly used tensor glyph for symmetric second order tensors
is the ellipsoidal glyph or Cauchy’s stress quadric glyph defined by
the surface s with

σi jsis j = const. (20)

For diffusion progress this can be interpreted as an iso level of the
Gaussian diffusion kernel used in Brownian motion. In anisotropic
diffusion, the tensor σi j is proportional to the covariance matrix
of the particle movements. Thus the surface describes a level of
constant particle density and encloses a volume of higher particle
density after a certain diffusion time.

A better model for our purpose is a generalization of Reynold’s
stress glyph defined by the surface points

s = σi1...ir ĝi1 · . . . · ĝir · ĝ j, (21)

where ĝ again is a unit vector sampling the sphere (Fig.6). Using fσ
as defined in Eq.15, this glyph can be drawn for tensors of arbitrary
order. Reynold’s glyph is quite common in mechanics because of
its close relation to Mohr’s circle. Different interpretations of this
representation in material sciences and geomechanics can be found
in a paper by Hashash et al. [9]. Its interpretation for a generalized
diffusion is the average distance a particle moves when it is pushed
with a certain energy in direction ĝ, where the movement has not to
be along the direction of the force.

If the tensor values are symmetric and of even order, and many
glyphs have to be drawn, the spherical harmonic representation fα
from Eq.11 can be used for efficiency. There, the basis functions
can be precomputed at the sampling points. A point on the sur-
face is then evaluated by the scalar product of coefficients and basis
functions. All points can be evaluated using a single matrix–vector
product, where the rows of the matrix contain the pre-evaluated ba-
sis functions for the corresponding sampling point. To improve vis-
ibility of directional components, maxima of f can be indicated
using arrows as shown in the figures 2, 3 and 6.

4 HIGHER ORDER TENSOR LINES

To define line structures, we need to have a closer look at higher
order tensor fields. Let Σ be the set of tensors of arbitrary order r
and let

T :R3 ⊇ U → Σ (22)
p → σ(p) (23)

be a C2 continuous tensor field. In the following, we study the
corresponding function fσ(p) at each position, i.e.

fσ(p) : S2 → R (24)

(θ ,φ) → fσ(p)(θ ,φ) (25)

Figure 2: Glyph deforming from single direction to a glyph having
two independent directions. Reading from left to right: a new max-
imum is “born”. Tracking horizontal lines goes on without noticing.
Reading from right to left: a possible tracking direction vanishes and
tracking on the vertical direction stops. Theory shows that there has
to be a degenerated tensor between the second and the third.

Figure 3: Some degenerated tensors according to Eq.26. Direction
ambiguity is shown by displaying some of the possible tracking direc-
tions. A completely spherical tensor (left) where fσ is constant, a flat
tensor (middle) that has a direction ambiguity in a plane. A special
case where two maxima are distinct while others are not (right).

so we have a function on the sphere at every position. We call a
position p ∈U degenerated if there is a position (θ ,φ) ∈ S2 where

∇S2 fσ(p)(θ ,φ) = 0 (26)

and
det |∇2

S2 fσ(p)(θ ,φ)|= 0. (27)

(The name is well chosen because some tensor lines are not
uniquely defined at these positions in accordance to the usual notion
of degenerate points introduced by Delmarcelle and Hesselink [3].
Fig. 3 gives a visual impression of some of those tensor glyphs.)
Usually testing higher derivatives would lead to a more restrictive
definition of degenerated points. There are special instable cases in
which study of higher order derivatives would reveal, that what we
call degenerated is not degenerated. For simplicity, we ignore these
very rare cases in the following sections.

At a regular point (i.e. a not degenerated point) q ∈ U we
have a finite number M of isolated maxima (θ1,φ1), . . . ,(θM ,φM)
of fσ(q). Using the implicit function theorem, we obtain neighbor-
hoods U1, . . . ,UM ⊆U and unique C1-functions

gm : Um → S2 (28)
p → gm(p) = (θm(p),φm(p)) (29)

that parameterize the maxima (θm(p),φm(p)) over the neighbor-
hood Um, i.e.

∇S2 fσ(p)(gm(p)) = 0 (30)

and
∇

2
S2 fσ(p)(gm(p)) is negative definite. (31)

Using the functions gm, we define unique (major) tensor lines in
the tensor field T as curves

xm : Im → Um (32)
t → xm(t) (33)



with
xm(0) = q (34)

and
∂xm

∂ t
(t) = gm(xm(t)). (35)

The same proof can be used to define minor tensor lines on T
when substituting maxima to minima knowing that

∇
2
S2 fσ(p)(gm(p)) (36)

becomes negative definite. Median higher order tensor lines would
be lines following the direction of saddle points of fσ .

The algorithm for major lines is shown in Algorithm 1 and 2.

Algorithm 1 Main Loop
get all maxima at current position p
append position, directions and initial step size to set to track
while to track is not empty do

get next triple of (position, direction, stepsize)
track line( position, direction )

end while

Algorithm 2 function track line ( position, direction )
stopped = false
while not stopped do

while not step accepted or stopped do
if stepsize too small then

stop because degenerated point reached
end if
step = direction * stepsize
get directions at position + step
if there is a single direction close to the current direction
then

accept this step and increase stepsize if new direction is
close enough

else if there are multiple directions close to current direc-
tion then

append (position) to set of degenerated points and stop
here

else
reduce stepsize and try again

end if
end while

end while

There are only two parameters for our algorithm. One is the step-
size management where lower and upper limits are needed relating
to the smoothness of the data set. The second parameter is the di-
rection accuracy which depends on the wanted tracking accuracy
and the order of tensors, because higher orders can produce many
maxima that are close together.

4.1 Special Cases

After having defined a general way of tracking lines in tensor fields,
we want to have a look at some of their properties. A degener-
ated case is the case where tensors are of pure order zero, i.e. they
contain only a direction independent scalar component a0

0, which
makes tracking impossible. This is obvious as scalar fields have
no orientation so we will ignore scalar fields. Those points can be
found as degenerated points or singularities in fields of higher or-
der, too. In second order tensor fields, they are called isotropic and

we adopt this nomenclature to fields of arbitrary order. This is a
special case of degenerated tensors shown in Fig. 3.

If Σ is the set of tensors of order one, i.e. vectors, then it is
quite obvious that major higher order tensor lines are equivalent to
streamlines, neglecting their parameterization. Minor higher order
tensor lines are the same as streamlines on the negated tensor field,
i.e. streamlines tracked backwards.

Let σ jk be a symmetric tensor of second order and λi its eigen-
values where λi ≥ λi+1∀i and ei the corresponding eigen directions.
Then, if σ jk is not degenerated, fσ jk has two maxima in direction
e0 and −e0. In those areas, HOT–lines are well defined and lead to
isolated lines that are equal to second order tensor lines. For major
HOT–lines, a degenerated second order tensor has λ0 = λ1. The
case λ0 > λ1 = λ2 is not degenerated because it does not influence
the existence of the two maxima. Medium and minor HOT–lines
correspond in a similar way to medium and minor tensor lines.

A physical interpretation for the definition of fσ jk can be seen in
the following example: Let σ jk be a stress tensor (i.e. a symmetric
tensor) and λi its eigenvalues and eigenvectors defined as above.
The stress on an arbitrary plane with normal n̂ can be computed as

sk = σ jkn̂ j. (37)

The normal component ns of sk is

ns = σ jkn̂ jn̂k, (38)

and the vector describing the normal stress is

ns = σ jkn̂ jn̂kn̂l = fσ jk (n̂)n̂. (39)

This is the same definition as used in the glyph representation in
Eq. 21.

Currently, little is known about tensor fields of mixed symmetric
and antisymmetric orders. All previously mentioned approaches
focus on finding lines in either symmetric second order fields or
purely antisymmetric first order tensor fields. Usually, arbitrary
second order tensors are decomposed in their trace and its deviator.
The deviator is further decomposed into symmetric and antisym-
metric part before visualization leading to special interpretations
of these components. A good example of this is the second order
rate of strain tensor in liquid flow, whose scalar part (trace) denotes
the divergence, vector part the rate of rotation in the plane perpen-
dicular to the vector and the symmetric second order part denoting
shear flow. Although we are able to track lines in arbitrary tensor
fields when using a general description of fσ from Eq. 15, there is
currently no physical interpretation of these lines. This will be a
topic of further research in tight collaboration with scientists and
engineers working in the field of application.

5 APPLICATION IN MEDICAL IMAGING

Magnetic resonance imaging (MRI) of water diffusion in tissue has
been used to infer anatomical structure and to aid in the diagnosis
of many pathologies. This is due to the assumption of diffusion ori-
entation in tissue reflecting the orientation of tissue structures even
if these structures are far below the resolution of current imaging
techniques. MRI can give useful information about the structure of
human brain in vivo and thus helps detecting several diseases like
amyotrophic lateral sclerosis [20, 24] and the Alzheimer’s disease
even before other symptoms are visible.

The reconstruction of neural connectivity patterns from DTI is
based on the phenomenon of diffusion anisotropy in nerve tissue:
Water molecules diffuse relatively freely along the neural fiber di-
rection but are hindered in the fiber-transverse direction. The hin-
drance of water diffusion in white matter is putatively due to the
diffusion barrier presented by the cell membrane and the myelin
sheath [2, 16].



Usually, diffusion is represented by a second order tensor model.
The tensor anisotropy is related to the amount of fibers and its major
eigenvalue to the direction of those fibers. In general, the field can
be reduced to an orientationless vector field representing the neural
fiber orientations. This model leaves only one important direction
per voxel and special features like crossings or bifurcations can-
not be represented on voxel scale and are ignored. Thus for voxels
containing multiple fibers, other models of diffusion become im-
portant [7, 22].

5.1 Theory of DT-MRI

Diffusional process under influence of magnetic fields in liquids are
governed by the Bloch-Torrey differential equation [25, 22]. Solv-
ing this equation leads to the Stejskal-Tanner formula for diffusive
attenuation

S = S0e−γ2σ 2G(∆−δ/3)D = S0e−bD, (40)

where S is the signal intensity in presence of a gradient G and S0
is the baseline image which is the signal intensity in the absence
of diffusion-sensitizing field gradients to which the remaining mea-
surements can be related. The parameter b = γ2σ2(∆− δ/3) is
called b-factor or diffusion weighting factor. It can be modified by
changing the linear field gradient G of the magnetic field. The gy-
romagnetic ratio γ of a nucleus relates the Larmor frequency ω0 in
a static magnetic field B to its strength by ω0 = γ|B|. Results of the
measurement strongly depend on the chosen b-values as pointed out
by Frank [6] and Jones [12].

The scalar value D defining the strength of signal attenuation is
called apparent diffusion coefficient in the direction of measure-
ment and is the value measured by MRI. In diffusion tensor imag-
ing, directional information is important and a symmetric second
order tensor Di j = D ji is reconstructed from at least six indepen-
dent gradient weighted directions in addition to the S0 image. It is
obvious that more complex functions on the sphere can be used to
approximate the angular dependency of the measured diffusion co-
efficient. Because the measurement can only evaluate motion along
gradients, but not its direction, all reconstructed data representing
particle movements has to be symmetric on the sphere. We recon-
struct higher order symmetric second order tensors Di0...ir of order
r by solving Eq.40 by least square fit.

5.2 Tensor Construction

Frank [6] described the use of the spherical harmonic transform as a
method of deriving the spherical harmonic coefficients. In general
this is not a trivial task. In analogy to the fast Fourier transform,
there exist fast spherical harmonic transformations but they need
special sets of sampling points which may not be available in the
MRI scanner hardware and software.

Thus, we use least square fitting of gradient magnitudes to the
spherical harmonic basis as this is a widely used method for second
order tensors and makes comparison of our results easier. There are
better methods when outliers are present that have been presented
by Mangin et al. [17]. These can be used, too, but we did not notice
such problems on our data sets.

For fitting the data, the gradient directions have to be chosen
thoughtfully because they provide a fundamental part of the matrix
describing the relation between the diffusion tensor coefficients and
the measured apparent diffusion coefficients. If it is not well con-
ditioned, the reconstruction may be instable and the tensor values
overshoot. It seems like a common method to circumvent this prob-
lem by using a higher amount of gradient directions (about 80 up to
more than 120) which increases the time of measurement or forces
to reduce image resolution which both is clinically not reasonable.

Figure 4: Comparison between fractional anisotropy (top), number
of tracking directions (middle) and multi fiber index (bottom) of the
same slices of an MRI scan. Diffusion tensors have order 4. On all
images, white means high values, black is zero. For the direction
map, black means zero or two directions, white ten or more. The
FMI is clipped to a range of [0 . . .2] for higher contrast of the images.

As the time of measurement is a limiting factor in medical appli-
cations, one has to find the best trade-off between measuring time
and number of gradient directions which are directly related to the
highest possible order in tensor representation. Special analysis of
this topic has been done by Jones et al. [13]. We use two different
sets of gradient directions for our experiments. A standard set of 36
directions provided by the scanner and the set of 30 gradient direc-
tions described by Jones which enable us to reconstruct symmetric
tensors of order four and order six respectively.

Because of the properties of diffusion respectively the method of
measurement, all reconstructed tensors are symmetric and consist
only of even order information. The property of positive definite
second order tensors can be found in fσ > 0. This means that the
coefficient a0

0 in spherical harmonic representation must be large
enough to compensate the sum of oscillations of any higher spher-
ical harmonic. Usually, in measured data this may not be true be-
cause of noise, but neither did we experience such problems in the
valid part of our data sets (i.e. inside the measured head) nor has
the component a0

0 an influence on the stability of our approach.
Whereas the medical visualization community agrees on the fact

that the assumption of Gaussian diffusion for reconstruction of sec-
ond order tensors gives good results for simple, single-fiber struc-
tures, more work has to be done for higher order tensor data. There,
methods like Q–Space imaging and Q–Ball imaging [31, 30] have
been developed and used to compute the orientation distribution
function (ODF), a smooth function on the sphere describing the
probability of a particle to move in a certain direction on the sphere.
As we target the clinical usability of fiber tracking, Q–Space imag-
ing is not usable because of higher data acquisition times. Different
methods have been proposed to compute fiber directions using the
ODF. Because of the relatively small angular resolution of our clin-
ical data sets, there is only little difference in the results and we use
the maximum of the ODF as a fast approximation.



5.3 Notes on Anisotropy Measurements

In medicine and computer science there exist many different meth-
ods to calculate measurements for the anisotropy of tensor values.
Many of them, like fractional anisotropy

FA =

√
3
2

∑i(λi− λ̄ )2

∑i λ 2
i

, λ̄ =
1
3 ∑

i
λi (41)

or linear and planar anisotropy used e.g. by Westin et al. [32] are
based only on eigenvalues λi of the second order tensors. Because
of the described orthogonality of tensors, they do not reveal any
information about higher order components. Other methods have
been proposed like the standard deviation or the variance of dif-
fusion coefficients along the gradient directions or other sampled
grids [6]. A relatively good method is calculating the relation of
energy in higher order spherical harmonics to those of second or-
der, labeled fractional multi fiber index (FMI) by Frank [7]

FMI =
∑l>2 ∑m |am

l |
2

∑m |am
2 |2

. (42)

There are instabilities, when both tensor components of order two
and of higher orders are close to zero. Thus, we propose to intro-
duce a threshold on the overall energy for calculation. Fig. 4 com-
pares three different anisotropy measures. The first row displays
the fractional anisotropy, that only depends on the eigenvalues of
the second order tensor. The second row shows the number of lines
present in each voxel, i.e. the number of local maxima of the func-
tion f described earlier. It can be seen that the multi fiber index
shown in the third row is clearly related to the number of directions
found in the voxel. In addition, both, the number of fibers per vox-
els and the multi fiber index are inverse to the fractional anisotropy
in highly oriented areas. It is worth to note that direction ambiguity
increases in areas where fiber bundles get thinner especially when
reaching the cortex.

5.4 Fiber Crossings and T-Junctions

The basic idea of using higher order representations of the diffusion
function is to preserve more information of the measured data for
its analysis. All current approaches in diffusion tensor tractography
have similar problems at highly isotropic regions of low fractional
anisotropy where major and middle eigenvalue have approximately
the same value and the tensor glyph approximates a donut shape
(Fig. 3b). These areas can be divided into mainly isotropic areas
(spherical shape, Fig. 3a) and those really having two main direc-
tions, i.e. two crossing fiber bundles, that cannot be represented by
simple second order tensor models.

Higher order models reveal more information about the local
structure, because they do not reduce information to only six values
where only five indicate directional information out of about thirty
values measured in commonly used DTI scanners. All other infor-
mation is ignored in the preprocessing step before knowing whether
local structure allows this reduction or whether further analysis
needs this information. Thus crossings can be detected and mul-
tiple directions can be computed, representing the fiber directions.
From the definition of higher order tensor lines, it can be easily
seen that those areas having fiber crossings must be surrounded by
a surface of degenerated tensors.

The problem of T-junctions is mentioned in literature from time
to time. While it is not clear if single fibers have T-junctions or
not, fiber bundles may have. Despite this fact, the measured diffu-
sivity at those positions will never have T or Y shapes because of
the symmetry enforced by the measurement and the resolution of
voxels. This does not lead to wrong results, but reflects the nature
of diffusion.

Some of the problems mentioned may be solved by using ad-
ditional information about the local neighborhood like smoothing
data along lines, smoothing in areas of similar behavior [19, 29] or
preserving directions when possible [21]. Those algorithms can not
reconstruct local behavior inside the voxel and thus use less infor-
mation than possible. Obviously, they can be combined with our
approach to improve the quality and give more information about
the global structure.

5.5 Speed Improvements for Fiber Tracking

When tracking fibers in human brain, usually many thousand paths
are precalculated and reduced afterwards to fiber bundles. Thus,
tracking single fibers has to be a fast operation. To improve speed,
we fall back to simple second order tensor fiber tracking algorithms
in areas where only one dominant fiber direction is present. There-
fore, our fiber tracking algorithm monitors local anisotropy mea-
surements and orientation change to decide whether to go on or an-
alyze higher order tensor components. These approximations can
be made due to the similarity of HOT–lines with second order ten-
sor lines presented in section 4.1, and the fact that anisotropy val-
ues give a good hint of the number of directions present in DT-MRI
data sets as shown in Fig. 4. The modified fiber tracking algorithm
is shown in algorithm 3.

Algorithm 3 DTI Main Loop
while not out of grid do

get next tensor value
compute eigenvectors
compute anisotropy
if anisotropy < threshold then

process next step with higher order lines
else if direction deviation is too large then

process next step with higher order lines
else

accept next step
end if

end while

There anisotropy may be any anisotropy measurement indica-
tion the influence of multiple directions in a voxel. We can further
modify algorithm 1 to track lines through degenerated parts if there
exist isolated maxima by using algorithm 4.

Algorithm 4 function track line in dti ( position, direction )
while not stopped do

while not step accepted or stopped do
if stepsize too small then

stop because maximum has vanished
end if
step = direction · stepsize
get directions at position + step
if there is a single direction close to the current direction
then

accept this step and increase stepsize if new direction is
close enough

else if there are multiple directions close to current direc-
tion then

append (position, direction, stepsize) to set to track and
stop here

else
reduce stepsize and try again

end if
end while

end while



Figure 5: Fourth order tensor glyphs painted at a slice of DT-MRI
data. The smaller images are the complete slice of diffusion tensor
glyphs (top) and the T1 weighted image (bottom) provided for orien-
tation. The two highlighted areas in these images indicate the areas
displayed in the top and bottom image resp.

Usually thresholds of fractional anisotropy are chosen between
0.2 and 0.3, depending on the signal to noise ratio (SNR) of the
data set. Even though the algorithm does not explicitly depend on
a special representation of the tensor values, we recommend the
spherical harmonic representation of Eq. 11 because this enables
better speed optimization of the algorithm.

5.6 Data Acquisition

Whole–head high-resolution DT images were acquired from a
healthy subject between the ages of 20-30 years. The diffusion ten-
sor was computed as described previously from diffusion weighted
SE-EPI (TR 8100 ms; TE 120 ms; 1.7×1.7×3mm3; 2 acq.) with
b-factors 0 and 1000s/mm2 (36 directions). The resulting data con-
sists of 128× 88× 33 voxel. Because of restrictions due to the
chosen gradient directions, only tensors of order four could be cal-
culated which leads to additional noise reduction.

5.7 Implementation

All presented methods have been implemented in C++ using
the FAnToM visualization system developed at the University of
Leipzig. First, existing methods [21] have been implemented to be
able to compare our results. Integration itself has been done using
Euler’s method with adaptive stepsize control, second order Runge-
Kutta and dopri5/RK45 working on the tensor data set to get cor-
rect interpolation of eigenvectors and to be able to prevent flipping
of eigenvector directions in regions of high isotropy. Maxima were
found by sampling the function f on a triangulated grid. The steps
of tracking lines in highly isotropic areas of the MRI data set can
be seen in Fig. 7.

Figure 6: Different glyphs of symmetric tensors of order four taken
from the MRI data set. The glyph surface is sampled on a triangu-
lated grid created by subdivision of an icosahedron. Possible tracking
directions are indicated by arrows.

6 CONCLUSION AND FUTURE WORK

We have developed a framework for visualizing higher order tensor
fields by presenting a fast method for displaying glyphs for sym-
metric tensors of even order. The theoretical concept of higher order
tensor lines has been introduced. Their existence has been proved
as well as their relation to second order tensor lines and streamlines.
Furthermore, the concept is generalizes to all types of data specify-
ing smooth scalar functions in spherical coordinates at every point
of the data set.

Application to diffusion tensor imaging has proved to be useful
on scanned data sets, where fiber crossings and low signal to noise
ratios make it impossible to follow fiber tracts using the information
provided by a simple Gaussian second order tensor diffusion model.
We have shown that even with a relatively small number of direc-
tions it is possible to use higher order tensor models for diffusion
which makes it possible to use these models in clinical application.
Future work needs to be done on investigating the signal to noise
ratio in relation to increased b-values to find a optimal tradeoff be-
tween higher order structures revealed by higher b-values and SNR.
Furthermore, the definition of better anisotropy values is a crucial
point for speed improvements of our algorithm on diffusion tensor
data. Here, information about local signal to noise ratio may be
introduced, too.

Having the well founded definition of HOT–lines, further appli-
cations have to be investigated which will be done in close cooper-
ation with scientists and engineers of the respective field of appli-
cation especially mechanics, where possible applications could be
displaying properties of complex composite materials like metal-
matrix composites.
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Figure 7: Results from the tracking algorithm on spherical harmonics of order four in the MRI data set. Tracking proceeds from left to right.
The implementation continues tracking on degenerated points (i.e. points where the number of possible tracking direction changes.)
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