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Abstract—Perfusion data are dynamic medical image data which characterize the regional blood flow in human tissue. These data
bear a great potential in medical diagnosis, since diseases can be better distinguished and detected at an earlier stage compared to
static image data. The wide-spread use of perfusion data is hampered by the lack of efficient evaluation methods. For each voxel,
a time-intensity curve characterizes the enhancement of a contrast agent. Parameters derived from these curves characterize the
perfusion and have to be integrated for diagnosis. The diagnostic evaluation of this multi-field data is challenging and time-consuming
due to its complexity. For the visual analysis of such datasets, feature-based approaches allow to reduce the amount of data and
direct the user to suspicious areas.

We present an interactive visual analysis approach for the evaluation of perfusion data. For this purpose, we integrate statistical
methods and interactive feature specification. Correlation analysis and Principal Component Analysis (PCA) are applied for dimen-
sion reduction and to achieve a better understanding of the inter-parameter relations. Multiple, linked views facilitate the definition
of features by brushing multiple dimensions. The specification result is linked to all views establishing a focus+context style of vi-
sualization in 3D. We discuss our approach with respect to clinical datasets from the three major application areas: ischemic stroke
diagnosis, breast tumor diagnosis, as well as the diagnosis of the coronary heart disease (CHD). It turns out that the significance of

perfusion parameters strongly depends on the individual patient, scanning parameters, and data pre-processing.

Index Terms—Multi-field Visualization, Visual Data Mining, Time-varying Volume Data, Integrating InfoVis/SciVis

1 INTRODUCTION

Compared to static image data, where the morphology of anatomic
and pathological structures is represented with high spatial resolu-
tion, dynamic image data characterize functional processes, such as
metabolism and blood flow, which is often essential to detect dis-
eases at an early stage or to discriminate pathologies with very similar
morphology. Important examples of these data are functional MRI,
where activations of brain areas are measured, dynamic SPECT, where
metabolic processes are imaged, and perfusion imaging, where the
blood flow is represented. We focus on perfusion data which are ac-
quired to support essential diagnostic tasks, e.g., cerebral perfusion
for stroke diagnosis, the assessment of tumors, and perfusion of the
myocardium (heart muscle) for CHD diagnosis.

In perfusion imaging, the distribution of contrast agents (CA) is
registered to assess blood flow and tissue kinetics. For each voxel, a
time-intensity curve (7IC) characterizes the CA enhancement. How
long it takes until the maximum amount of CA is delivered, which
maximum is achieved, as well as other parameters are derived from
these curves for medical diagnosis. The derived parameters represent
a special instance of multi-field data which is becoming more and more
important in medicine [3], [11]. They are substitutes for physiological
parameters such as tumor perfusion and vessel permeability [5]. The
integrated analysis of several parameters in a suspicious region is es-
sential. For the diagnosis of ischemic stroke, e.g., if the blood flow
is delayed in a particular region, it is crucial to evaluate if the overall
blood flow is also reduced [17].

To streamline the integrated analysis of perfusion parameters, we
present a visual analysis approach incorporating pre-processing and
statistical methods as well as feature specification steps. Motion cor-
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rection and noise reduction are fundamental pre-processing issues to
achieve a reliable correspondence of voxels over time. Since the dif-
ferent parameters are derived from the same TIC, it is likely that some
parameters correlate with each other. We apply a correlation anal-
ysis and a PCA [15] to achieve a better understanding of the inter-
parameter relations and to simplify and to speed-up the diagnosis by
reducing the complexity of the multi-field data. Besides its complex-
ity, the non-standardized parameter domain, which depends on the
scanning protocol, complicates the diagnostic evaluation. For the vi-
sual analysis of such data, feature-based approaches allow to direct
the user to suspicious regions and to reduce the amount of data. Our
approach integrates methods for an interactive feature specification
of high-dimensional complex features in multi-field data. Multiple,
linked views facilitate the definition of features which can be com-
plex and/or hierarchically described by brushing multiple dimensions.
Non-binary brushes account for the uncertainty involved in the in-
spection of a non-standardized parameter domain. Furthermore, they
represent a natural mapping of irreversibly damaged or malignant tis-
sue, suspicious or reversibly damaged tissue and healthy tissue to fo-
cus, near-focus and context. The specification result from all views is
linked to a 3D view, establishing a focus+context style of visualiza-
tion. The 3D representation of the perfusion parameters within their
anatomic context allows a localization of the specification result.

Our visual analysis approach primarily addresses medical re-
searchers seeking for a better understanding of which perfusion pa-
rameters are crucial for specific diagnostic tasks and how imaging pa-
rameters influence the expressiveness of perfusion parameters. This
research is motivated by contradictory recommendations in medical
research papers, e.g., [1] and [25] for CHD diagnosis.

This paper is structured as follows: In Sec. 2, we give an overview
on the medical background in perfusion diagnosis and on correlation
analysis and PCA. Prior and related work on the application of Info-
Vis techniques for the analysis of multi-field data as well as on the
visual analysis of perfusion data are presented in Sec. 3. In Sec. 4,
we describe our analysis approach. The application of the approach
to clinical perfusion datasets from ischemic stroke diagnosis, breast
tumor diagnosis, and CHD diagnosis, is discussed in Sec. 5. The last
section will summarize and conclude the paper.

2 MEDICAL AND TECHNICAL BACKGROUND

This section gives a brief overview on perfusion diagnosis and ac-
quaints the reader with the basics of correlation analysis and PCA.



2.1 Perfusion Diagnosis

In perfusion imaging, a CA is injected intravenously and its distribu-
tion is measured by a repeated acquisition of subsequent images cov-
ering the volume of interest. The CA provides signal changes in the
acquired 4D data (3D+time). In case of a perfusion defect, the corre-
sponding region exhibits an abnormal change in signal intensities. The
spatial resolution and quality of perfusion data are worse than those of
static data. High temporal resolution can only be achieved at the ex-
pense of lower spatial resolution and image quality.

Particularly CT, PET, SPECT and MRI data are employed for perfu-
sion imaging. In the following, we only consider MR perfusion, since
MRI is the most widespread perfusion imaging technique for breast
tumor diagnosis. It outperforms CT in stroke diagnosis, since the en-
tire brain can be scanned (instead of a single slice with CT) and it has
shown to have at least a similar sensitivity and specificity in compari-
son to PET and SPECT in CHD diagnosis.

Perfusion Parameters. For the diagnosis, regions of interest in
healthy and suspicious tissue are defined, and TICs—averaged over
all voxels in the selected region—are analyzed. Depending on the ap-
plication area, different sets of parameters, derived from the curves,
are relevant. However, some parameters are of general interest (see
Fig. 1). Before we describe these parameters, we introduce three pa-
rameters necessary for a reliable evaluation.

The CA arrival represents the point in time when the signal en-
hancement actually starts, whereas Timepg,, refers to the end of the
first CA passage. The Baseline represents the average intensity before
CA arrival (see Fig. 1). These parameters are determined to focus the
evaluation of the TIC to the relevant portion. Assessing perfusion con-
sidering the actual CA arrival, Timeg,, and the Baseline is essential to
compare analysis results from different scanning devices and patients.
Major diagnostically relevant parameters are:

e Peak Enhancement (PE). The maximum value (between CA ar-
rival and Timeg,,;) normalized by subtracting the Baseline. The
PE separates the time interval between CA arrival and Timeg, 4
into a phase of CA wash-in followed by the CA wash-out.

o Time To Peak (TTP). The time until PE occurs, normalized by
subtracting CA arrival time. This parameter allows to assess if
the blood supply is delayed in a particular region.

e [ntegral. For the time interval between CA arrival and Timeg, 4,
the area between the curve and the Baseline—the approximated
integral—is computed. Together, PE and Integral may give a
hint on reduced blood flow.

o Mean Transit Time (MTT). In the time interval used for the inte-
gral calculation, MT T specifies the first momentum of the curve.
It is normalized by subtracting CA arrival time.

e The Slope characterizes the steepness of the curve during wash-
in. Depending on the temporal resolution, different regression
methods are used to characterize the curve progression. The term
Up-Slope in cardiac diagnosis relates to the maximum slope be-
tween two or three subsequent time-steps during wash-in. In
tumor perfusion studies, the related parameter MiTR (Maxi-
mum intensity to Time Ratio) is determined; it is computed as
PE/TTP and it is thus an average slope.

e The DownSlope characterizes the steepness of the descending
curve during wash-out and is computed similar to the Slope,
however, with a negative sign.

The parameters are derived per voxel and stored in separate param-
eter volumes (3D). As a major pre-processing step, noise reduction
is often solved by conventional filters, such as Gaussian. Lysaker et
al. [19] introduced a filter for 4D data that better preserves features
based on the simulation of a diffusion process. Motion-correction is
the second major pre-processing task, carried out to establish a valid
inter-pixel correspondence. It is essential when breathing, heartbeat,
patient movement, or muscle relaxation occur. The motion correction
algorithm developed by Rueckert et al. is widely used [26].
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Fig. 1. A typical time-intensity curve in myocardial perfusion with a sig-
nificant first pass and an alleviated second pass of contrast agent traver-
sal annotated with the essential parameters to evaluate the first pass.
Similar curves are observed in cerebral perfusion.

2.2 Correlation and Principal Component Analysis

Correlation analysis reveals whether variables vary independently of
each other or are (inversely) proportional. The amount of correlation is
represented by the so-called correlation coefficient (r). In the follow-
ing, we assume a matrix A™*" representing n variables (perfusion pa-
rameters) and m observations (voxels of the parameter volumes). The
symmetric matrix R"*" of correlation coefficients is then computed
based on the covariance matrix C of A. A value of r;; = —1 indicates a
perfect inversely proportional relationship, whereas a value of r;; = 1
corresponds to a perfect proportional relationship. A value of r;; =0
relates to non-correlated variables. Besides R, an equally-sized sym-
metric matrix P of p-values is computed for testing the hypothesis of
no correlation. If a particular p-value is < 0.05, the correlation is con-
sidered significant. Miiller et al. [21] suggest that the user may exclude
variables from a PCA that strongly correlate with each other. Other-
wise, these variables might misleadingly strengthen certain trends.

The PCA is a technique from multivariate statistics to detect vari-
ables from multi-dimensional data that may be redundant. For dimen-
sion reduction, these variables may be grouped together. Furthermore,
PCA explains the structure of relationships between variables and thus
provides additional insight into the data. The PCA results in new vari-
ables, the so-called principal components. Each principal component
(pc) represents a single axis in a new orthogonal coordinate space (pc-
space)—generated by a variance maximum rotation of the original
data space. The first pc (pcl) explains most of the variance in the
original data, the second pc (pc2) most of the remaining variance, etc.

Before applying a PCA, it is often reasonable to standardize the
data. This is necessary, if the variables have not been measured in the
same units or if their variance is substantial. For standardization, A is
centered around its mean and then each column of A is divided by its
standard deviation. This step is often referred to as Auto-scaling. One
way to compute the pc’s is to apply a Singular Value Decomposition
(SVD). As a result, the SVD returns matrices PCS"*", scores™ " and
a vector containing the eigenvalues A'*" of C. Each column of PCS
consists of n loadings representing the weights for the linear combi-
nation of the n original variables. The scores are the coordinates of the
original data transformed into pc-space. The vector A represents the
variances explained by the n pc’s.

According to Miiller et al. [21], the PCA results may be exploited in
several ways, e.g., to detect prominent trends in the data. These trends
are represented by the pc’s. The loadings indicate how individual vari-
ables correlate with these trends. The eigenvalues of C may be applied
to neglect less significant trends (low values correspond to a low vari-
ance explained by the corresponding pc). A major problem involved
in interpreting PCA results is the difficulty to relate trends to the orig-
inal variables [21]. Therefore, Miiller et al. [21] suggest to oppose the
scores and the original variables in a scatterplot. Another approach
they recommend is to present the scores in their spatial frame of ref-
erence (the original perfusion data). Furthermore, linking & brushing
should be applied to relate the scores to the original variables.



3 PRIOR AND RELATED WORK

This section describes prior and related work on the application of
InfoVis techniques for the analysis of multi-field data as well as on the
visual analysis of perfusion data.

Visual Exploration of Multi-field Data. Our visualization con-
cepts extend ideas from general systems for analyzing and exploring
multidimensional image data such as [11]. Due to the absence of stan-
dardized intensity values and the high variability of image scanners
and patient data, the analysis of perfusion is a typical exploratory ana-
lysis task where visual data mining techniques are essential.

Closely related concepts were presented by Gresh and Rogowitz in
the WEAVE system [11]. In particular, we employ their concept of
tightly integrating a 3D visualization with multiple statistical repre-
sentations, connected by brushing facilities applied to scatterplot rep-
resentations. Similar to their exploratory scenarios, we also attempt to
quickly compare and correlate variables. Inspired by their approach,
Doleisch et al. developed the SimVis framework for interactive feature
specification for CFD data in previous work [8], [9]. In [3], the con-
cepts of Gresh and Rogowitz have been optimized for the interactive
work with very large medical multi-field datasets and extended by the
integration of analysis techniques from pattern classification.

Visual Exploration of Perfusion Data. Basic visualization tech-
niques for exploring perfusion data were described by [2] (focus on
tumor perfusion) and [17] (focus on cerebral perfusion). The cine-
matic depiction of gray scale images in a movie loop gives an impres-
sion of the enhancement pattern [5]. Subtraction images depict the
intensity difference between two selected points in time, thus, empha-
sizing regions where the CA is absorbed. However, they do not pro-
vide quantitative temporal and spatial information, which could make
the diagnostic results more reproducible. Color-coded parameter maps
[17] reveal the regional distribution of selected perfusion parameters.
However, the analysis of parameter combinations in a tiled visualiza-
tion requires a mental integration of suspicious regions.

Multiparameter visualizations, integrating several perfusion param-
eters in one image, were introduced in [16] and [23]. Different kinds
of multivariate color scales, color icons and colored height fields were
discussed. Flexible lenses were used to integrate the visualization of a
foreground parameter (in the lens region) with a background parame-
ter. In particular for Dynamic Contrast-Enhanced MRI Mammography
(DCE-MRIM) data with its high spatial resolution, direct volume ren-
dering techniques have been explored. A color-coded Closest Vessel
Projection was presented in [16]. Coto et al. [6] employ two-level
volume rendering and importance driven volume rendering to focus
volume rendered images to previously segmented breast lesions. This
work is the closest to our work since also linking & brushing was em-
ployed to select regions of interest. However, they did not consider the
perfusion parameters described in Sec. 2.1. Instead, they only consid-
ered the intensity values and the enhancement in a subtraction image.
The application profile flags presented by [20] may be used to imme-
diately integrate TICs into a visualization, thus supporting the mental
integration of the curve parameters and the display of the original per-
fusion data. Finally, [14] describe highly interactive 3D visualizations
of DCE-MRIM data in a virtual reality environment.

Analysis of Perfusion Data. Another venue of analyzing perfusion
data relates to a statistical analysis as well as mining and knowledge
discovery techniques. In particular, the classification of DCE-MRIM
data by means of artificial neural networks and clustering techniques
is an active research area [4, 22, 28]. As an example, Twellmann et
al. [28] applied an artificial neural network architecture which com-
bines unsupervised and supervised techniques for voxel-by-voxel clas-
sification of temporal kinetic signals derived from DCE-MRIM data.
Chen et al. [4] developed a fuzzy c-means clustering-based technique
to automatically identify characteristic kinetic curves from segmented
breast lesions in DCE-MRIM data. Nattkemper and Wissmueller [22]
described the application of self-organized maps to time curve features
of DCE-MRIM data and discussed how the results may be visually
represented as color-coded cross-sections. The automatic classifica-
tion may be useful in a screening setting in order to replace the opinion
of a second radiologist or to direct a radiologist to suspicious regions.

4 A PERFUSION DATA ANALYSIS APPROACH

This section describes our visual analysis approach independent of a
specific application area. However, the included figures have been
generated based on cerebral perfusion data to illustrate the approach
by means of a real-world example (see also Sec. 5.1).

The approach consists of three major components (see Fig. 2): a
pre-processing component, a component for statistical analysis, and
a component for interactive feature specification in multi-field data.
For the work presented here, these components have each been imple-
mented in MeVisLab', a platform for medical image processing and
visualization, MATLABZ, and the framework SimVis-.
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Fig. 2. Schematic representation of our perfusion data analysis ap-
proach consisting of a pre-processing component, a component for sta-
tistical analysis, and a component for interactive feature specification.

Export classes

4.1 Pre-processing

The original 4D perfusion data serves as input for the pre-processing
component. Here, the data is noise reduced applying a Gaussian ker-
nel and motion-corrected according to [26]. The separate time points
(3D data) are exported and may, e.g., serve as context information
during the visual analysis. For some applications, such as ischemic
stroke or CHD diagnosis, it is useful to restrict the computation of per-
fusion parameters to relevant structures (brain tissue or ventricles of
the heart). A variety of segmentation algorithms has been integrated
into MeVisLab. The perfusion parameters are derived voxel-wise for
the segmented regions and exported separately as parameter volumes.
These volumes serve as input for the feature specification as well as
for the statistical component. The segmentation part may be skipped,
if the entire dataset must be analyzed.

4.2 Statistical Analysis

At the beginning of the statistical analysis, the user is presented a list
containing the perfusion parameters which have been approved in his
or her diagnostic field of interest (see Sec. 5.1-5.3). The user may re-
fine this initial set resulting in a new set {F;} of k parameters. In a

'Product of MeVis Research; www.mevislab.de
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3Developed by the VRVis Research Center, Vienna; www.simvis.at



next step, the background voxels within the parameter volumes corre-
sponding to {F;} are identified to restrict further computations to the
anatomic structures. Based on the histogram of one of these parameter
volumes, the background voxels are identified (the highest peak in the
histogram) and excluded from further analysis (Background removal).
The decision may be refined by defining a threshold. The indices of
the remaining m voxels VOX,,,, are stored in a vector ID,,;.,. Then,
the perfusion parameter matrix A™** is constructed considering only
the voxels referred to by ID,,.,. As discussed in Sec. 2.2, the PCA
may require a standardization of its input to deliver meaningful re-
sults. Since the perfusion parameters have not been measured in the
same units, Auto-scaling is applied to A resulting in A;’Z;k .

To evaluate the relationships between several parameters, a correla-
tion analysis is carried out resulting in matrices R and P. In order to
consider only significant correlations, P is examined for values < 0.05.
The correlation coefficients in R corresponding to the remaining values
are set to 0 (no correlation). A visual representation of R now enables
the user to identify parameters that are highly correlated (see Fig. 3). A
scatterplot matrix is generated by plotting all columns in A, against
each other. The background color of each plot has been chosen ac-
cording to the respective value in R. A color scale has been designed
that visually separates negative and positive coefficients. Furthermore,
it emphasizes strong correlations (coefficients < —0.9 or > 0.9). The
diagonal of the scatterplot matrix shows a histogram for each parame-
ter. All axes limits are set based on the respective inner quartile range
such that outlier values are not displayed. The visualization of R in
Fig. 3 shows the following strong correlations: Integral <+ PE, PE <
MiTR, PE < Slope, Slope < MiTR and Slope < DownSlope (in-
versely proportional). Since parameters PE and Slope strongly cor-
relate with three other parameters respectively, they may be excluded
from further processing. This results in the Matrix A7/, where [ is
the number of remaining parameters.

Integral

Slope DownSlope MIiTR

Integral

MIiTR DownSlope Slope

MTT

PE

TTP

Fig. 3. Scatterplot matrix of perfusion parameters. The background
color of each plot is chosen according to the respective correlation coef-
ficient. The color scale is designed such that strong correlations (< —0.9
or > 0.9) are emphasized. The diagonal of the matrix shows a histogram
for each parameter. All axes limits are set based on the respective inner
quartile range such that outlier values are not displayed.

In a next step, a PCA is carried out based on A, resulting in the
matrices PCS'*!, scores™ ! and a vector A'*! (recall Sec. 2.2). To
detect trends in the data, the loadings in PCS are visualized in a bar
chart (see Fig. 4, crosshatched bars). However, the PCA does not only
reveal the trends but it orders them by their significance—expressed
by the variances in A. To incorporate this significance in the visual-
ization, the loadings in column i,i € [1,]] of PCS are weighted with
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Fig. 4. Principal components and their loadings for the parameters. The
original loadings are visualized as crosshatched bars. To incorporate
the significance of each trend, these loadings are weighted with the vari-
ance explained by the corresponding pc (filled bars).

A(1,i) according to [21] (see Fig. 4, filled bars). The plot in Fig. 4 re-
veals a major trend represented by pcl. This trend is determined by the
parameters Integral, DownSlope and MiTR. The positive loadings of
Integral and MiTR indicate a direct proportional relationship, whereas
the negative loading of DownSlope indicates an inversely proportional
relationship. To relate the trends to the original perfusion parameters,
their scores are exported for a later processing within the feature spec-
ification component.

The end of the statistical analysis constitutes a classification step
which has not yet been implemented. However, related work indicates
that in particular techniques to classify DCE-MRIM data are promis-
ing to detect suspicious regions (see Sec. 3).

4.3 Feature Specification

The interactive feature specification of data coming from the pre-
processing as well as from the statistical analysis stage of our approach
is carried out in a framework employing the SimVis technology [8],
[9]. SimVis was previously developed for the analysis of 3D time-
dependent flow simulation data, but has recently been extended to cope
also with multiple other data types, e.g., 3D weather radar data and 3D
medical data. A data converter has been implemented to transform
medical RAW data into the SimVis data-format.

In SimVis, multiple linked views are used to concurrently show, ex-
plore, and analyze different aspects of multi-field data. 3D views of the
volume (also over time) can be used next to several types of attribute
views, e.g., scatterplots or histograms. Interactive feature specifica-
tion is usually performed in these attribute views. The user chooses
to visually represent selected data attributes in such a view, thereby
gaining insight into the selected relations within the data. Then, the
interesting subsets of the data are interactively brushed directly on the
screen (see Fig. 5(b) for an example). The result of such a brushing
operation is reintegrated into the data in form of a synthetic data at-
tribute DOI ; € [0, 1] (degree of interest (DOI) attribution of the data,
compare to Furnas [10]). This DOI attribution is used in the 3D views
of the analysis setup to visually discriminate the interactively specified
features from the rest of the data in a focus+context visualization style
which is consistent in all (linked) views [13].

In the SimVis system smooth brushing [9] (enabling fractional DOI
values) as well as the logical combination of brushes for the specifi-
cation of complex features [8] are supported. A smooth brush results
in a trapezoidal DOI function around the main region of interest in
the attribute views. To enable the integration of a flexible derived data
concept, a data calculator module with a respective graphical user in-
terface has been added. New attributes can be derived from existing
ones and thereafter are available for investigation in all linked views.

There are several different purposes of the interactive feature spec-
ification process and the resulting exploration and analysis steps, of
which the most important are:



Fig. 5. Ischemic stroke diagnosis. High TT P and low Integral values (delayed and diminished perfusion) have been brushed in a scatterplot (b). As
a result, the infarction core is revealed in (a) applying TTP for color-coding. In (d), a near-focus region (arrows point at its borders) is defined by
means of smooth brushing. The updated visualization in (c) gives a hint on the location of “tissue at risk” (greenish area). In (e), the brain is rotated
to gain a better impression of the over-all extension of the infarction in 3D. Furthermore, the shape of the brain is indicated by a smooth brushing
applied on the gradient magnitude computed from a single time point of the perfusion data (). Interestingly, a smooth brushing of the scores of pcl
and pc2 (h) yields a very similar result (g) compared to (c). The brown lines in (h) represent the zero-axes.

e [Feature localization: to search for places in the 3D domain of
the data where certain feature characteristics are present. In
the SimVis approach, the user can brush features in attribute
views and concurrently localize the respective feature in the 4D
(3D+time) volume domain.

o Multi-variate analysis: to investigate multi-variate data proper-
ties by specifying a feature in one attribute view and at the same
time analyzing the DOI distribution with respect to other data
attributes in other attribute views (through view linking).

o Local investigation: to inspect the values of selected data at-
tributes with respect to certain spatiotemporal subsets of the 3D
volume domain. In the SimVis system, the user can also load
spatial as well as temporal data references into attribute views—
brushing these kinds of data attributes then yields features which
are specified according to their spatiotemporal extents.

5 APPLICATION

Our perfusion data analysis approach has been applied to 5 datasets
so far (1 from ischemic stroke diagnosis, 2 from breast tumor diagno-
sis and 2 from CHD diagnosis). These datasets are representative for
the respective diagnostic field concerning spatial and temporal resolu-
tion. Due to space restrictions, not all analysis results can be discussed
here. Therefore, the reader is referred to our supplementary website:
wwwisg.cs.uni-magdeburg.de/cv/VAoPD/. It contains additional ana-
lysis results, high-resolution versions of all images included in this
paper and a video to illustrate the interactive aspect of the analysis.

Pre-processing. All datasets have been noise-reduced applying a
Gaussian kernel. The datasets from breast tumor and CHD diagnosis
have been motion-corrected according to [26]. In the dataset from is-
chemic stroke diagnosis, the brain tissue has been segmented by means
of a watershed-algorithm [12]. In the datasets from CHD diagnosis,
the myocardium has been semi-automatically segmented in each slice
applying a live-wire technique [27]. The resulting contours have been
propagated over all time points. The parameter derivation has been
restricted to the segmentation results.

5.1 Ischemic Stroke Diagnosis

In case of an ischemic stroke, the existence and the extent of “tissue
at risk” surrounding the core of the stroke have to be evaluated. Surgi-
cal and medicamentous interventions may salvage at least parts of the
“tissue at risk” [7]. In cerebral perfusion, the first-pass of the CA (see
Fig. 1) is observed. The volume of blood in each voxel is diagnos-
tically relevant. It is approximated by the parameter Integral. Other
approved parameters are PE, TTP, MTT and Slope [17].

Case Study. The patient suffered from an infarction in the right
hemisphere (which appears left in each view of Fig. 5). The dataset
matrix is: 128 x 128, slice distance: 7 mm, number of slices: 12, tem-
poral resolution: 40 measurements in 40 sec.

Statistical analysis. The results of the statistical analysis are il-
lustrated in Figs. 3-4. First, we added DownSlope and MiTR to
the default parameter set. The correlation coefficients then indicated
strong correlations (recall Sec. 4.2): between parameters describing
the amount of the enhancement (Integral < PE), between parameters
describing the velocity of the enhancement (Slope < MiTR, Slope <
DownSlope), and in between these types (PE < MiTR, PE < Slope).
The correlation between Slope and DownSlope is inversely propor-
tional. Since the DownSlope is measured in negative values, this in-
dicates that a fast wash-in (high Slope values) is likely to be followed
by a fast wash-out (high negative DownSlope values). Since PE and
Slope strongly correlate with three other parameters respectively, they
have been excluded from further processing.

The PCA showed four major trends (pcl-pc4) which account for
52% +29% + 11% + 7% = 99% of the variance in the data. A prob-
lem when interpreting PCA results is to assign a meaning to the newly
generated coordinate axes. According to Miiller et al. [21], we label
the axes with respect to the parameters that determine the trend in the
respective pc. More meaningful labels could be “Amount and Veloc-
ity” for pcl and “Time to Enhancement” for pc2. Interestingly, the
trends represented by pc3 and pc4 characterize atypical enhancement
behavior and conflict with pc2 and pcl, respectively (see Fig. 4). This
observation has been further investigated and the results are presented
on the website mentioned above.
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Fig. 6. Breast tumor diagnosis. Selection of high intensity differences between original time points 7, and #, (b) emphasizes areas were the CA is
absorbed (a). Two suspicious regions are detected (arrows). The analysis is focused on a local region LR around S, (c) by means of brushing
small Euclidian distances between its center and the surrounding tissue (d). Areas exhibiting a rapid wash-out are selected in a histogram depicting
DownSlope (f). A negative brush (purple box) is used to exclude positive and small negative values. The brown line marks the vertical zero axis.
The remaining areas are visualized in (e) and color-coded according to Slope. Yellow to red areas indicate a rapid wash-in and wash-out. A smooth
brushing of Slope within LR (h) reveals subtle jags along the border of Sy, (g) which are typical for malignant tumors.

Visual analysis. A crucial task in stroke diagnosis is to localize
the infarction core and especially the surrounding “tissue at risk”.
Fig. 5 shows how visual analysis may guide this process. In a scat-
terplot, TTP and Integral are opposed and a region is brushed that
indicates delayed and diminished perfusion (Fig. 5 (b)). As a result of
this feature localization, the infarction core appears as a bright region
(Fig. 5 (a)). High T'T P values are mapped to colors from yellow to red.
Smooth brushing now gives a hint on “tissue at risk” (Fig. 5 (d)). A
near-focus region is defined (arrows point at its borders) incorporating
areas where the perfusion is delayed as well, however, enough blood
arrives over time. Candidate areas for “tissue at risk” appear greenish
(medium 77T P values) in Fig. 5 (c). This observation could be success-
fully validated with [16] where the same dataset has been examined.
In Fig. 5 (e), the brain has been rotated to illustrate the over-all exten-
sion of the infarction. Furthermore, the shape of the brain is indicated
as context information. Latter has been achieved by a smooth brush-
ing of the gradient magnitude computed based on the intensity values
from a single time point of the original perfusion data (Fig. 5 (f)). This
technique will be used throughout the paper. In Fig. 5 (h), the scores of
pcl and pc2 have been opposed. As discussed above, meaningful axes
labels could be “Amount and Velocity” and “Time to Enhancement”.
Hence, small values on the x-axis and high values on the y-axis are
brushed. The near-focus region is selected accordingly. A compar-
ison of Fig. 5 (g) and Fig. 5 (c) shows that the revealed areas match
closely. Hence, the trends expressed by pcl and pc2 together facilitate
the detection of infarcted tissue.

5.2 Breast Tumor Diagnosis

The major diagnostic task in breast tumor diagnosis is to assess the ma-
lignancy of a tumor. Evaluating the shape of the TICs has proven to be
effective in the differentiation of enhancing lesions [18]. Parameters
that describe the shape are MTT, MiTR, PE, Slope, DownSlope, TTP
and Integral. Curves—which show a rapid wash-in followed by a rapid
wash-out—are especially suspicious because they indicate strong per-
fusion and high permeability of vessels. Less suspicious are curves
showing a plateau later on, or regions which continue to enhance.

Case Study. The data was acquired to examine a suspicious re-
gion in the right mamma which had been detected during conventional
mammography. The dataset matrix is: 458 x 204, slice distance: 3 mm,
number of slices: 26, temporal resolution: 6 measurements in 10 min.

Statistical analysis. Two extra parameters describing the steep-
ness of the curve during wash-in and wash-out have been added to
the default parameter set. Each of them was computed between two
particular time points selected by the user. A strong correlation be-
tween Integral and PE as well as between PE and Slope was found.
Since PE strongly correlates with two other parameters, it has been
excluded from further processing. The PCA showed four major trends
expressed by pcl-pc4. All together account for ~ 91% of the variance
in the data. In the following, the focus is on a streamlined localization
and separation of suspicious structures for local investigation.

Visual analysis. Subtraction images emphasize regions where the
CA is absorbed (see Sec. 3). Hence, additional parameters have been
derived based on the original time points in the perfusion data. Each
parameter describes the intensity difference between two subsequent
time points ¢; and #;, where j > i. In Fig. 6 (b), high differences in in-
tensity between time points 7, and 7y have been selected (Selectionl).
The corresponding areas are emphasized in Fig. 6 (a). The structure
Siarge had already been detected in conventional mammography. Fur-
thermore, a smaller structure Sy,,,;; is revealed close to the thoracic
wall. Besides these structures, major vessels and the acromastium
are emphasized. To focus the analysis on a region around Sy, for
local investigation, Euclidean distances between its center and the
surrounding tissue are computed. Then, a range of distance values
(Selectionl) within Selection] is brushed such that the local region
LR around Sj,q. includes S,q. The definition of a local region
around Sj4y is illustrated in Fig. 6 (c,d). In Fig. 6 (f), Selectionl;
(red bars) is transferred to a histogram of parameter DownSlope for
multi-variate analysis. High negative values indicating a rapid wash-
out are typical for malignant tumors. Hence, this range has been se-
lected within Selectionl by excluding positive and small negative
values with the help of a negative brush (purple box). The result is
color-coded by means of parameter Slope in Fig. 6 (e). Sj4rq and
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Fig. 7. Visual analysis in CHD diagnosis of datasets Heart; (a-d) and Heart, (a, e-h). (a): Plot representing pcl and pc2 of datasets Heart; and
Heart,. Brushing the scores of pcl (b) reveals the infarcted region (green area in (c)). The right ventricle (left arrow) and the lumen (right arrow)
are presented as context information. The selection from (b) is transferred to a scatterplot (d) opposing TTP and Up-Slope. In this case, TTP is
not a reliable parameter to detect the infarcted tissue since the selection is spread over its entire codomain (red dots). However, this may not be
valid for another dataset as illustrated in (e-f) for Heart,. A selection of high TTP values and small Up-Slope values (f) reveals the infarcted tissue
(green area in (e)). Brushing the scores of pc2 (h), which represents an atypical enhancement pattern, exhibits areas where the motion-correction

and thus the segmentation of the myocardium have partially failed (g).

Ssmair both exhibit regions with a rapid wash-in and wash-out and are
thus likely to be malignant. Sj,,,,;; partially shows small Slope values
which should be further investigated. Another indication that confirms
the suspicion of malignancy is illustrated in Fig. 6 (g-h). A smooth
brushing of high and medium Slope values within LR shows subtle
jags (so-called spikulae) along the border of Sj;q.. The observations
in this section could be validated by means of a report from an expe-
rienced radiologist who supposed that S,,,,,;; forms a satellite lesion
connected to Sy, by one of the spikulae.

5.3 CHD Diagnosis

In CHD diagnosis, the detection and localization of a perfusion deficit
as well as the assessment of the severity are relevant. Major diagnostic
tasks to be performed are to evaluate whether the patient suffers from
CHD, to evaluate the severity of the disease and to assess the vascular
supply of less perfused tissue. At an early stage, CHD is characterized
by a perfusion defect caused by a stenosis (an abnormal vessel nar-
rowing). For CHD diagnosis, the parameters Up-Slope, PE, TTP and
Integral have been approved [1], [24], and [25].

Case Study. The two patients both suffered from a heart attack.
The matrix of dataset Heart; is: 144 x 192, slice distance: 18 mm,
number of slices: 4, temporal resolution: 40 measurements in 38 sec.
The matrix of dataset Heart, is: 144 x 192, slice distance: 18 mm,
number of slices: 3, temporal resolution: 40 measurements in 23 sec.

Statistical analysis. First, MiTR has been added to the default pa-
rameter set. The correlation coefficients for Heart; and Heart, indi-
cated a strong correlation between Integral and PE. Due to the higher
variance of the Integral values in both cases, PE was excluded from
the PCA. The PCA of Heart; showed two major trends in pcl and
pc2, respectively (Fig. 7 (a)). Both pc’s together explain ~ 91% of the
variance in the data. However, pcl describes an atypical enhancement
pattern. In damaged tissue, the blood flow is delayed (high 7T P val-
ues) and diminished (low Integral values). However, pcl indicates a
proportional relationship which will be examined below.

The PCA of Heart, showed three major trends expressed by pcl to
pc3. All together account for 51% + 25% + 17% = 93% of the vari-

ance in the data. For the sake of brevity, only the first two pc’s are
examined here (Fig. 7 (a)). A typical enhancement pattern is repre-
sented by pcl. However, pc2 shows an atypical pattern. As in pcl of
Hearty, TTP is proportional to Integral and Up-Slope. Furthermore,
MiITR is inversely proportional to Up-Slope though both parameters
describe the steepness of the curve during wash-in.

Visual analysis. To examine the atypical enhancement pattern rep-
resented by pcl of Heart;, the scores of pcl have been brushed in a
histogram (Fig. 7 (b)). A selection of high values reveals the infarcted
tissue (green region in Fig. 7 (c)) within the ring-shaped myocardium.
Since the circular shape of the myocardium hampers the orientation,
context information has been added. Two arrows point at the right ven-
tricle (left arrow) and the lumen of the left ventricle (right arrow). The
selection from Fig. 7 (b) has been transferred for a multi-variate ana-
lysis to a scatterplot opposing TTP and Up-Slope (red dots in Fig. 7
(d)). Interestingly, the infarcted tissue is spread over all time points.
Probing the TICs within the infarcted region showed that the acquisi-
tion time of the scan was too short to determine a reliable 7TP. In
the infarcted region, no CA arrived at all over time. However, PE and
therefore TT P always exist—no matter if the TIC represents CA en-
hancement or noise. After all, it seems that in spite of the unreliable
TTP values a brushing of the scores of pc1 still delivers meaningful
results. This might be due to the low loading of TTP (Fig. 7 (a)).

A major difficulty in analyzing perfusion data is that the reliability
of a parameter may change from case to case. As illustrated in Fig. 7
(a, e, f), TTP might be a reliable parameter for feature localization
in Hearty. Brushing of high 7T P and small Up-Slope values reveals
the infarcted region (green). Here, pcl describes a typical enhance-
ment pattern. In contrast, pc2 describes an atypical pattern: 77 P and
Integral are proportional, and Up-Slope and MiTR are inversely pro-
portional related. Brushing of extreme values of pc2 (Fig. 7 (h)) re-
veals areas at the transitions between myocardium and lumen and my-
ocardium and pericardium (Fig. 7 (g)). Further examination showed
that the propagation of the segmented myocardial contours did not
match the myocardium at all time points (recall para. Pre-processing
in Sec. 5). It turned out that the motion correction had partially failed.



6 SUMMARY AND CONCLUSION

We presented the integration of pre-processing techniques, statistical
methods, and interactive feature specification for the analysis of the
multi-dimensional space of perfusion parameters. The visual analysis
strategy presented here allows to assess the reliability of specific perfu-
sion parameters, the correlation of perfusion parameters in a particular
case, and thus enables an efficient evaluation focused on a significant
subset of perfusion parameters. The statistical analysis facilitates the
detection of trends in the data. Trends, representing typical enhance-
ment patterns, may be applied for the detection of suspicious struc-
tures while trends, representing atypical enhancement patterns, may
indicate pre-processing failures. We discussed our approach with two
experienced radiologists, both familiar with perfusion imaging in the
clinical routine, though not in a research context. Both argued that the
statistical analysis is only applicable in the clinical routine—in partic-
ular in emergency cases—if carried out in the background leading to
an initial suggestion for suspicious regions. We will investigate this in
our future work. Both assessed brushing as valuable for exploring a
non-standardized parameter domain. They appreciated the visualiza-
tion of perfusion data in 3D since it provides a good overview.

Compared to the prevailing visual and highly subjective evaluation
methods, our approach enables a more reproducible evaluation sup-
ported by quantitative analysis results. Thus, it may be used to answer
questions regarding the diagnostic value of certain parameter combina-
tions and to investigate the effects of a new contrast agent or changes
in other imaging parameters on this value. Such questions are de-
bated in the medical research. The most important work to be done
relates to a thorough evaluation for a larger number of specific cases
in cerebral, tumor, and myocardial perfusion. Within such an evalua-
tion, the perfusion data analysis and clinical parameters characterizing
the progress of the respective disease have to be integrated to better
understand the diagnostic value of perfusion parameters.

SimVis has been designed to work with data laid out on arbitrary
grids. An overhead of neighborhood information is generated for med-
ical data laid out on Cartesian grids. This overhead hampered an in-
teractive analysis in case of DCE-MRIM data exhibiting a high spatial
resolution. Techniques from [3] will be investigated to resolve this
limitation. With respect to the analysis strategy, the incorporation of
clustering techniques which classify regions according to the similar-
ity of TICs, deserves a systematic investigation.
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