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Abstract. Deformable surface models are often represented as trian-
gular meshes in image segmentation applications. For a fast and easily
regularized deformation onto the target object boundary, the vertices
of the mesh are commonly moved along line segments (typically surface
normals). However, in case of high mesh curvature, these lines may inter-
sect with the target boundary at “non-corresponding” positions, or even
not at all. Consequently, certain deformations cannot be achieved. We
propose an approach that allows each vertex to move not only along a
line segment, but within a surrounding sphere. We achieve globally regu-
larized deformations via Markov Random Field optimization. We demon-
strate the potential of our approach with experiments on synthetic data,
as well as an evaluation on 2x106 coronoid processes of the mandible in
Cone-Beam CTs, and 56 coccyxes (tailbones) in low-resolution CTs.

1 Introduction

Deformable surface models are widely used for image segmentation [1]. Among
the many different representations of surfaces, polygonal meshes are advanta-
geous in many respects, such as flexibility or topology preservation [2]. The
deformation of the model is often driven by minimizing an energy that consists
of an image term that measures how well the model is aligned with features in
the image, and a regularization term that controls the smoothness of the model.
During energy minimization, the vertices of the mesh are iteratively displaced.

A fundamental challenge of this approach is how to keep the mesh valid,
i.e. as regular as possible [3]. One way to confront this problem is to allow
vertex displacements only in surface normal direction. Additional measures are
adaptive step-size control, adaptive remeshing, special regularization or mesh
surgery. The drawbacks of these approaches are that they are often difficult
to implement, slow down the convergence of the method drastically, or even
lead to situations where the deformation gets stuck. This is especially the case
in regions of high curvature. Hierarchical approaches may be able to circumvent
this problem: First the model is adapted with strong regularization, e.g. by using
shape priors such as statistical shape models [4], which is then gradually relaxed.
Although this increases robustness, the last bit of accuracy may only be achieved
with a deformation model free of a-priori shape constraints (see e.g. [5]). This is
the type of deformation model we focus on.



Fig. 1. Normals on a cube (a) and on a tip-like structure (c). Unregularized defor-
mations along normals: No target boundary points (b) or non-corresponding target
boundary points (d) found for most vertices.

Normal (or other one-directional) displacements of mesh vertices may either
lead to very few features being detected in the image (low visibility), or many
“wrong” features (in terms of correspondence), as depicted in Fig. 1. This induces
large distortions of the mesh. Remeshing may restore mesh regularity, while im-
plausible shape deformations are to be remedied by regularization. In summary,
certain deformations can hardly be achieved with one-directional displacements,
given that directions are not known a-priori. E.g., parallel movements of tip-like
structures cannot be achieved along surface normals.

This paper contributes a solution to this problem: We propose a method
that allows arbitrary displacement directions at each mesh vertex. This enlarges
visibility, while correspondence is likely to be improved, too. However, a larger
set of image features may be found per vertex, so global regularization is required
to cope with highly inconsistent neighboring displacements. Our method allows
displacements to a discrete set of points within a sphere around each vertex. This
discrete nature allows us to formulate the segmentation problem as a Markov
Random Field (MRF), as shown in Sec. 2. The MRF can be solved efficiently [6],
yielding a globally regularized deformation of the mesh. MRFs have been applied
to many problems, e.g. image-to-image registration [7], due to their capability of
finding good optima. Global regularization has been proposed for one-directional
displacements using graph cuts [8]. However, this approach is not applicable in
our case as it requires a total order on displacements in terms of “above/below”.

We illustrate on synthetic and real data that omni-directional displacements
combined with MRF optimization can handle parallel movements of meshes with
high curvature, where previous approaches based on normal displacements fail.

2 Method

We denote the set of vertices v ∈ R3 of the deformable surface mesh as V , and
the set of pairs of adjacent (i.e. edge-connected) vertices as N ⊂ V × V . Each
vertex can be moved by adding a vector l ∈ L, where L ⊂ R3 is a discrete set



Fig. 2. Three vertices (black dots) on a 2D contour. (a) Omni-directional displacements
to yellow/gray dots. (b) Exemplary “same” displacements shown by black arrows with
corresponding numbers. (c) Same displacement for all vertices leads to parallel trans-
lation.

of possible displacements. We call a position v + l sample point, and a mapping
V → L, v 7→ lv that assigns a displacement to each vertex displacement field.

2.1 Omni-directional Displacements

We propose to extend the range of motion for a vertex from a line segment
to a sphere centered at its current position. Therefore, we define L as a set
of displacements that are uniformly distributed within a sphere (see Fig. 2a).
The sphere radius is a parameter of our method. The set of displacements is
interpreted in world coordinates for all vertices (see Fig. 2b and 2c). As discussed
in Sec. 2.2, this is important for regularization.

2.2 Objective Function

For each displacement l ∈ L and vertex v ∈ V , a scalar cost c(v, l) ≥ 0 encodes
whether sample point v+l is believed to lie on the object boundary. The stronger
the belief, the lower should be the cost. In other words, c(v, l) serves as a penalty
for the case that v is displaced by l. We calculate c(v, l) from the image I : R3 →
R. It depends on I(v + l), ∇nv

I(v + l) (where nv denotes the surface normal
at v), and application-specific parameters (see Sec. 3). In general, our objective
function accepts any c : V × L → R+

0 , so c can be defined as appropriate.
E.g., if the surface mesh might locally lie perpendicular to the object boundary,
derivatives in directions other than nv may be considered as well.

For each two displacements l1, l2, a scalar distance value d(l1, l2) ≥ 0 serves
as a penalty for the case that l1 and l2 occur on adjacent vertices. The distance
function d : L × L → R+

0 is supposed to take care of regularization. It has to
satisfy d(l1, l2) = 0⇔ l1 = l2, but does not have to be a metric (see Sec. 2.3).
It can, e.g., be the Euclidean norm ||l2 − l1|| to some power.

We define the objective function of the mesh adaptation problem as follows:∑
v∈V

c(v, lv) +
∑

(v,w)∈N

d(lv, lw) (1)



We are looking for the displacement field that minimizes Eq. 1. Note that inter-
preting displacements in world coordinates yields distance-penalties for scaling
the mesh, while parallel translations are not penalized (see Fig. 2c). We consider
this beneficial as we expect our initial meshes (as well as its local features) to
have approximately correct scale. Alternatively, if scaling should not be penal-
ized, one could interpret displacements in local coordinate systems per vertex.

2.3 Optimal Displacement Field

We encode the objective function in Eq. 1 as an MRF, with vertices being rep-
resented by MRF-nodes, mesh edges by MRF-edges, and displacements by the
possible states (also called labels) of the nodes. Cost c(v, l) defines the unary po-
tential of node v in state l, and distance d(l1, l2) defines the binary potential of
two adjacent nodes in states l1, l2. The MRF-state with minimal sum of poten-
tials yields the desired displacement field. We optimize the MRF by a method
named FastPD [6]. FastPD can deal with non-metric distance functions d as
specified in Sec. 2.2. It is guaranteed to find an approximately optimal solution.

3 Results

To evaluate our MRF-based method, we applied it to three types of 3D data:
(1) Synthetic binary images, (2) synthetic binary images with various amount
of noise, and (3) clinical image data. On synthetic binary images and clinical
image data, we also computed results with a globally regularized method [8]
(GraphCuts) and a locally regularized method [5] (FreeForm), both employing
vertex normals as displacement directions. GraphCuts computes the displace-
ment field with minimum sum of costs while respecting a hard constraint on the
difference between the lengths of adjacent displacements. FreeForm takes the
minimum cost displacement for each vertex and regularizes locally via a small
displacement toward the centroid of the respective adjacent vertices.

For the computation of the costs c(v, l), we used the strategy proposed in [9]:
If the intensity I(v + l) lies within a certain window [i0, i1], costs are inversely
proportional to ∇nv

I(v + l). Otherwise costs are set to a constant, high value.
The thresholds i0 and i1 are parameters of the strategy. As distance function d,
we used d(l1, l2) = ||l2−l1||3 in all experiments. Whenever we employ GraphCuts
or FreeForm, we use the same cost function as for the respective MRF experi-
ment, and normal segments with the length of the respective sphere diameter.
In contrast to the GraphCuts- and MRF based adaptations, all FreeForm adap-
tations were performed iteratively, with 30 steps. All GraphCuts experiments
were performed with a difference constraint of 2 sample points (i.e. lengths of
adjacent displacements can be at most 2 sample points apart).

MRF optimization with FastPD took less than 10 seconds in all our ex-
periments. The computation of the MRF’s unary potentials c(v, l) was more
time-consuming, taking up to 10 minutes depending on the number of vertices
and labels. FastPD required memory up to 8GB for the experiments on clinical
data. All experiments were performed on a 3GHz core with 8GB main memory.



(a) (b) (c) (d) (e)

Fig. 3. Deformable mesh (red/dark grey mesh) and target object (transparent gray
surface). (a) Initial situation. (b) Displacements along normals without regularization.
(c) FreeForm approach. (d) GraphCuts approach. (e) MRF approach.

(a) (b) (c)

Fig. 4. Performance of MRF approach in the presence of noise. Random noise with
range (a) [−0.5..0.5], (b) [−2.5..2.5] and (c) [−5..5]. Slices of the image data and re-
spective adaptation result (red/dark grey mesh). Grey surface: ideal target object.

Synthetic Images. We performed experiments on binary images (i.e. intensi-
ties ∈ {0, 1}) of a cube and a thin ellipsoid. As initial meshes, we used triangu-
lated cube and tip surfaces with ideal shape, but shifted pose (see Fig. 3(a)). The
cube mesh had 770, the ellipsoid 1797 vertices. One sphere diameter (or surface
normal segment, respectively) was covered by 53 sampling points for the cube,
and 63 for the ellipsoid. For all experiments on synthetic data, we chose sphere
radii such that the target object boundary was located completely within a band
around the initial mesh that has this radius. We set the cost function parame-
ters to i0 = 0.1 and i1 = 1.1. The results of MRF-, FreeForm- and GraphCuts
adaptation are shown in Fig. 3(c), 3(d) and 3(e), respectively. Fig. 3(b) shows
the results of adding normal displacements without any regularization.

We added various amounts of random noise to the binary cube image and
performed MRF based adaptation as before. The cube was detected correctly for
noise with ranges [−0.5..0.5] and [−2.5..2.5], and failed for [−5..5]. Fig. 4 shows
slices of the noisy image data and the respective adaptation results.

Clinical Data. In a quantitative evaluation on 106 mandible Cone-Beam CTs
and 50 pelvis CTs we compared MRF, FreeForm and GraphCuts results to
gold standard surfaces obtained from manual segmentations. Initial meshes were



automatically generated by Statistical Shape Model adaptation [9, 10]. For the
mandible surfaces (gold standard as well as adaptation result), we extracted
the right coronoid processes as the region of the mesh that lies above 1/2 of
the extension of the mandible in transversal direction, between 1/3 and 2/3
of extension in dorsoventral direction, and above 2/3 in longitudinal direction.
Extraction of the left coronoid process worked analogously. We identified the
tip point as the upmost vertex in longitudinal direction. For the sacrum, we
extracted the coccyx as the region of the mesh that lies below 1/3 of the extension
of the sacrum in longitudinal direction. We identified the coccyx tip as the vertex
with minimum 3 · longitudinal−1 ·dorsoventral coordinate. As error measures we
assessed the tip-to-tip distances (tip2tip), tip-to-surface distances from result tip
to gold standard surface (tip2surfRtG) and the other way round (tip2surfGtR),
and roots mean square surface distances (rmsRtG and rmsGtR).

All mandible meshes had 8561 vertices, all sacrum meshes 6161. The number
of samples along a sphere diameter (or normal segment) was 39 for the mandible
and 45 for the sacrum. The sphere diameters were 15 mm (mandible) and 25 mm
(sacrum). We set the cost function parameters to i0 =350 and i1 =800 (mandible)
and i0 = 120 and i1 = 520 (sacrum). For the mandible, we performed a second
MRF based adaptation (mrfZ) with a slightly different cost function: We added
a small extra cost to sample points with lower longitudinal coordinate, thus
slightly preferring the a motion in upward direction.

Evaluation results are plotted as histograms in Fig. 5. As measurements
are not normally distributed, we performed the Wilcoxon signed-rank test to
asses significant differences (level 0.05). For the mandible, both MRF results are
significantly better than FreeForm and GraphCuts in terms of tip2tip, rmsGtR
and rmsRtG, while mrfZ performs significantly better in terms of tip2surfGtR,
too. For the sacrum, MRF results are significantly better than GraphCuts in
terms of all but the rmsGtR measure. However, compared to FreeForm, the
error difference is significant only for the two rms measures.

4 Discussion

Experiments on synthetic binary images show that our MRF-based approach is
able to handle parallel translations, in contrast to a globally and a locally regu-
larized approach (GraphCuts and FreeForm) that employ normal displacements.
Experiments on noisy synthetic images show that the MRF approach is able to
produce well-regularized displacement fields in the presence of noise. However,
for a very low signal-to-noise ratio, it may fail to detect the target object. Real-
world experiments show that the MRF approach is able to produce very accurate
segmentations of tip-like structures. On the mandible tips, the MRF approach
clearly outperforms the GraphCuts and FreeForm approach. Here, normal di-
rections often exhibit the “wrong-visibility” problem, see Fig. 6(a-c), which our
new method resolves. However, on the sacrum tips, more experiments need to be
performed to draw decisive conclusions. At least, the “non-visibility” problem
for normals can be resolved in a few exemplary cases, see Fig. 6(d,e).
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Fig. 5. Row 1: Coronoid process results on 106 individuals (i.e. 212 cases). Row 2:
Coccyx results on 50 individuals. X-axis: Error measure in mm (see Sec. 3). Y-axis:
Frequency. MRF (mrf, mrfZ), FreeForm (free) and GraphCuts (gc).

5 Conclusion

We proposed a method that allows omni-directional displacements for all vertices
of a surface mesh during deformable model adaptation. We achieve global regu-
larization by encoding the adaptation problem as a Markov Random Field, which
we then optimize with a fast approximate solver. In an evaluation on synthetic
as well as clinical data, we showed that this approach can outperform traditional
mesh adaptation along line segments (normals) in regions with high curvature
(tips) in terms of segmentation accuracy. In this paper, we focused on paral-
lel translations and tip-like structures. A closer investigation of our MRF based
method in situations where scaling and rotation is desired, as well as an extended
quantitative evaluation that considers all regions on mandible and pelvis shall
be performed in future work. Furthermore, computational performance (both
in terms of memory and speed) shall be enhanced, possibly involving a hybrid
deformation model that employs omni-directional displacements in regions with
high curvature and normal displacements elsewhere. Last but not least, a ques-
tion of interest is if the MRF based method can be extended to simultaneous
adaptation of multiple, adjacent meshes, i.e. multi-object segmentation.
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Fig. 6. Exemplary results on clinical data. (a-c) Coronoid processes of the mandible.
(d,e) Coccyx tips of the sacrum. Contours: Black: Gold standard. White: Initial mesh.
Green/gray: MRF result. Blue/light gray: FreeForm result.
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