
KAINMUELLER, LAMECKER, ZACHOW: MULTI-OBJECT SEGMENTATION 1
Annals of the BMVA Vol. 2009, No. 5, pp 1–10 (2009)

Multi-object Segmentation with
Coupled Deformable Models
Dagmar Kainmueller, Hans Lamecker, Stefan Zachow

Zuse Institute Berlin,
Takustr. 7, 14195 Berlin
〈kainmueller@zib.de〉

Abstract

For biomechanical simulations, the segmentation of multiple adjacent anatomical struc-
tures from medical image data is often required. If adjacent structures are barely dis-
tinguishable in image data, in general automatic segmentation methods for single struc-
tures do not yield sufficiently accurate results. To improve segmentation accuracy in
these cases, knowledge about adjacent structures must be exploited. Optimal graph
searching (graph cuts) based on deformable surface models allows for a simultaneous
segmentation of multiple adjacent objects. However, this method requires a correspon-
dence relation between vertices of adjacent surface meshes. Line segments, each con-
taining two corresponding vertices, may then serve as shared displacement directions in
the segmentation process. In this paper we propose a scheme for constructing a corre-
spondence relation in adjacent regions of two arbitrary surfaces. This correspondence
relation implies shared displacement directions that we apply for segmentation with de-
formable surfaces. Here, overlap of the surfaces is guaranteed not to occur. We show
correspondence relations for regions on a femoral head and acetabulum and other adja-
cent structures, as well as an evaluation of segmentation results on 50 ct images of the
hip joint.

1 Introduction

For patient-specific biomechanical simulations, e.g. of the human lower limb, an accurate
reconstruction of the bony anatomy from medical image data is required. This particularly
applies to joint regions, as simulation results heavily depend on the location of joints Heller
et al. [2001]. In CT data, bony tissue can usually be reconstructed by simple thresholding.
However, in joint regions, thresholding is often not sufficient for separating adjacent indi-
vidual bones from each other. Due to large slice thickness or pathological changes of the
bones, the joint space may be hard to detect even for a human observer. Fig. 1a and 1b show
exemplary situations.

We can achieve good initializations for bony structures (e.g. pelvis, femur) by our seg-
mentation framework which is based on initialization with the Generalized Hough Trans-
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Figure 1: (a) CT data of distal femur and proximal tibia, slice thickness 2mm, (b) acetabu-
lum and proximal femur, slice thickness 4,6mm. The joint space is barely visible in encir-
cled areas. (c) Acetabulum and proximal femur, slice thickness 5mm, with surface model
cross-section (black) and domain of intensity profile (line segment). (d) Intensity profile for
domain in (c).

form (GHT) and the adaptation of statistical shape models (SSM) Seim et al. [2008]. Segmen-
tations with SSMs, as originaly proposed by Cootes et al. Cootes et al. [1995], yield very good
initializations, but lack precision, since previously unknown patient-specific anatomy is gen-
erally not contained in the model. With Graph based optimization on Deformable Models,
more precise segmentations can be achieved, but they suffer from a loss of shape knowledge,
causing inaccurate interpolations where the object to be segmented cannot be distinguished
from adjacent structures in image data. Furthermore, the lack of image information may
generally lead to overlapping segmentation results when adjacent structures are segmented
separately.

A basic idea for improving segmentation results and simultaneously solving the over-
lap problem is to segment multiple adjacent objects at the same time and incorporate some
knowledge about their spatial relationship. The problem we address in this paper is how to
establish a suitable coupling of two arbitrary adjacent deformable surface models (triangu-
lar meshes), assuming that a good initialization of the two models is given. The contribution
of this work is a construction scheme for shared displacement directions for two arbitrary
surfaces, that is, line segments along which vertices of both surfaces can be displaced in a
deformable surface segmentation framework. We used the coupling realized by these shared
displacement directions for fine grain multi-object segmentation based on graph cuts. This
paper presents an evaluation on 50 ct images of the pelvic bones and proximal femur. Suffi-
ciently accurate initial segmentations were achieved with an articulated, composite statisti-
cal shape model of the pelvis and proximal femur, as presented in Kainmueller et al. [Sept.
2009].

2 Related Work

Costa et al. Costa et al. [2007] employ a non-overlapping constraint for coupled segmentation
of prostate and bladder with deformable models. They propose a force that drives two mod-
els apart if intersections occur in the segmentation process. This method principally allows
for free form deformations of the models while coping with overlap. If present, a statistical
shape model can be enforced on one of the models. If one structure is better distinguish-
able from the background than the other, an asymmetric non-overlap force can be applied.
This approach yields promising results in prostate and bladder segmentation. However, dis-
placements are not found simultaneously for both objects: Apart from the non-overlap force
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which only exists if an overlap has already occurred, one object does not take into account
any knowledge about the presence of the other object in displacement computation.

Tsai et al. Tsai et al. [2003] build composite statistical shape models by applying principal
component analysis to a training set of implicit (signed distance function) representations of
multiple objects. They apply such models to the segmentation of subcortical brain structures
and male lower abdominal structures (prostate gland, rectum, obturator muscles). Babalola
et al. Babalola et al. [2007] build a composite active appearance model on the basis of ex-
plicit (surface-mesh) representations of multiple subcortical brain structures. They apply
this model to obtain a good initialization of brain structure models to accurately segment
the caudate in a single object segmentation framework. Composite statistical shape models
yield a tight coupling of the deformations of multiple objects. Ideally, no overlap between
adjacent objects should be possible in model space. Nevertheless, neither of the two ap-
proaches allows for a fine grain free form multi-object segmentation, as model deformation
is bound to the respective shape space.

Li et al. Li et al. [2005] solve the overlap problem with optimal graph searching in a de-
formable model segmentation framework. They apply their method to the segmentation of
bone and cartilage in 3D MRI of human ankles. Vertex normals of the bone surface are used
as shared displacement directions for bone and cartilage surfaces. Thus, one direction may
be used to search for two object boundaries, thereby allowing for a completely simultaneous
segmentation process. Methods involving shared displacement directions have been de-
scribed for surfaces on which corresponding vertices are easily found. This holds for height
field or cylindrical surfaces in regular grids Li et al. [2006], or if one surface can be obtained
by displacing the other along its vertex normals Li et al. [2005].

Furthermore, Yin et al. Yin et al. [2008] apply multi-object graph cuts for knee-joint bone
and cartilage segmentation. Similar to the method we propose in this paper, they couple
adjacent surfaces with shared displacement directions. However, they do not deal with the
problem that overlapping segmentation results might occur if the shared displacement di-
rections do not fulfil certain conditions. Recently, Liu et al. Liu et al. [2009] have proposed
a method for segmenting the inner and outer wall of airway trees and lung vascular trees.
Their approach, which also uses the multi-object graph cuts method proposed by Li et al.
Li et al. [2005], is similar to ours as it makes use of medial axes of an inital segmentation to
define displacement directions with an appropriate length while avoiding self-intersections.
However, the displacement directions are specifically designed for tree-like structures with
multiple walls. They cannot be directly used for arbitrary adjacent surface meshes.

To the best of our knowledge, there is at present no method that generates shared dis-
placement directions on arbitrary adjacent surfaces that are guaranteed to generally prevent
overlapping segmentation results.

3 Multi-object segmentation with graph cuts

In segmentation with deformable surfaces, intensity profiles at each vertex of the surface mesh
are commonly used to guide the deformation process. An intensity profile is a set of intensity
samples taken from image data along a line segment at a vertex of the surface mesh, see Fig.
1c and 1d. Note that the term intensity profile or just profile may be used to refer to the sampled
intensities only, yet we use it to refer to the domain of the sampling, i.e. a line segment, as
well. Fig. 2a shows exemplary profiles on a triangular surface mesh. Profiles are commonly
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Figure 2: (a) Triangular surface mesh with profiles in normal direction. (b) Proximal femur
and ilium. Transparent: isosurfaces in distance transforms. (c) 2D cross-section. Thin lines:
surface contours. Thick: isosurface contours. Grey: potential overlap region.

defined to run along vertex normals, but other directions may be chosen as well. On each
profile, a cost function is derived from image data for a number of equidistant sampling
points. The minimum cost sample point on a profile may serve as a desired (locally optimal)
position for the respective vertex.

However, graph cut algorithms allow for a global optimization of the sum of costs for each
vertex displacement while respecting hard constraints on the distance of multiple objects and
on single object smoothness. Multiple surfaces can be coupled with shared intensity profiles
at individual vertices. Minimum and maximum distance constraints can be enforced on
the new vertex positions that the graph optimization finds for each surface on each shared
profile. For more details on graph construction see Li et al. [2006]. The optimization problem
can be solved in polynomial time, as discussed in Boykov and Kolmogorov [2004].

4 Non-overlapping surface deformations

Before shared profiles can be constructed, surface models of adjacent structures must be
initialized to have a reasonable spatial relation to each other. For bony structures of the
lower limb we can achieve initializations in CT data with a maximum surface distance of
about 1cm from a manual expert segmentation. For two such well-initialized surface models,
we identify a potential overlap region by dilating each surface by a user-defined amount l
(Fig. 2b and 2c). Our concern is to couple the surfaces with shared profiles wherever single
profiles of length 2 · l would reach the overlap region.

4.1 Properties of shared intensity profiles

In the following we give the conditions which must hold on shared profiles to generally
prevent any overlap after surface deformation. One necessary condition is imposed on new
vertex positions of coupled surface meshes A and B:

1. Let x be a vertex on A and m(x) the corresponding vertex on B. Then the new position
x∗A of x must lie closer to A than the new position x∗B of m(x) in profile direction.

In the following we assume that this condition holds, i.e. ‖x∗A − x‖ < ‖x∗B − x‖, see also Fig.
3a. We disregard the fact that surfaces can completely swap sides along shared profiles.

In 2D, when establishing shared profiles between deformable contours A and B, inter-
secting profiles can cause overlap of the deformed contours, as illustrated in Fig. 3b. Now we
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examine this situation in 3D. For this purpose we consider a bijective mapping m of piece-
wise continuous regions RA and RB on surfaces A and B ⊂ R3: Shared profiles on triangular
meshes can be seen as a finite set of line segments connecting corresponding triangle ver-
tices x and m(x). Hence they partially define or are embedded in such a mapping. However,
during surface deformation, not only each vertex, but each point on RA and RB is displaced
along a line segment that leads to its corresponding point. Profiles may not intersect with
each other, while other line segments that connect mapped point pairs do. Thus we are
interested in properties of mappings m and not only in properties of shared profiles.

An overlap after surface deformation cannot occur if the mapping m satisfies what we
call non-intersection condition, i.e:

2. No two connections of two mapped point pairs intersect.

For a proof, let R∗A and R∗B be the deformed regions. R∗A is the image of a function fA that
maps each point x on RA to a point x∗A on the line segment {x + λ · (m(x)− x)|0 ≤ λ ≤ 1}.
Each x∗A is defined by an individual λA(x) ∈ [0, 1]. Likewise R∗B is the image of fB that maps
each x on RA to an x∗B = x + λB(x) · (m(x)− x), with the additional constraint that λA(x) <
λB(x) for all x ∈ RA. If the deformed regions intersect, we have x, y ∈ RA with fA(x) =
fB(x), i.e. x + λA(x) · (m(x)− x) = y + λB(y) · (m(y)− y). The constraint λA(x) < λB(x) im-
plies x 6= y. This implies an intersection of the line segments {x + λ · (m(x)− x)|0 ≤ λ ≤ 1}
and {y + λ · (m(y)− y)|0 ≤ λ ≤ 1}, i.e. the line segments that connect the mapped point
pairs (x, m(x)) and (y, m(y)), respectively. In reverse, if no two connections of two mapped
point pairs intersect, the deformed regions do not intersect either. Note that the non-inter-
section condition also implies the continuity of m for homeomorphic regions RA and RB, yet
continuity alone is not sufficient for preventing overlap.

4.2 Mapping of non-empty surface regions

The following scheme establishes a mapping of topologically equivalent regions on smooth,
closed surfaces A and B that satisfies the non-intersection condition:

1. Compute the mid surface M (all points with same distance to A and B), and its normals
n where possible.

2. Define finite length vectors v on M as follows: Scale normals n and inverse normals
−n to some length exceeding the maximum distance of any two points x on A and y
on B. Then trim the scaled normals at the skeleton of M if they reach it. (The skeleton
of a surface is the set of points that are centers of spheres that touch the surface in more
than one point, but do not cut it.) The resulting vectors then do not intersect with each
other.

3. Iteratively map points on A and B cut by the same vector v. Start with vectors on local
minima of the signed euclidean distance function d : M → R, x 7→ d(x, A) on M.
(Note that d(x, A) = d(x, B) for all x.) Grow the regions considered on M as long as
corresponding regions on A and B have the same topologies.

This results in an intersection free mapping of regions. The mapping is not empty: At least
all vectors defined on local minima of d connect corresponding points. Such local minima
exist, as we are dealing with closed surfaces. The linear connections of the respective corre-
sponding points do not contain any point of the skeleton of M. For a proof, see Kainmueller
et al. [2008].
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Figure 3: (a) Necessary condition: x∗A lies closer to x than x∗B. (b) Contours A, B. Black lines:
Connections of mapped points intersect. Dotted: Exemplary deformed contours, intersect-
ing at black arrow. (c) Exemplary situations in 2D. Red, blue: contours to be coupled. Yellow:
mid contour. Purple: Skeleton of mid contour. Black: shared displacement directions. Top:
Overlapping regions can be entirely mapped. Bottom: Overlapping regions cannot be en-
tirely mapped. The thin part of the red contour remains unmapped

The mapped regions are guaranteed not to overlap after surface deformation along the
shared profiles. There might, however, be regions where an initial overlap cannot be re-
solved, because some overlapping regions cannot be mapped. An overlap in unmapped
regions is not resolved with our method. For exemplary situations, see Fig. 3c. Appropriate
initial segmentations are required to avoid situations as in Fig. 3c (bottom). If e.g. the initial
surfaces do not overlap at all, the whole surfaces are guaranteed not to overlap after surface
deformation along the shared profiles.

4.3 Generating shared intensity profiles

Based on the scheme for constructing an intersection-free mapping as proposed in Section
4.2, we realize a construction algorithm for shared profiles on pairs of adjacent triangular
surfaces A and B. In the process, we modify the connectivity of parts of the surface meshes.
The one-sided surface distance of the modified surface to the original surface is always zero.
No general assertions can be made regarding the reverse direction of the surface distance.

Fig. 4 shows the construction pipeline for an exemplary femur and ilium. First, the mid
surface M between the objects is computed as the zero level of the objects’ distance trans-
forms, subtracted from each other (Fig. 4b). M is discretized and triangulated to form a mesh
of high regularity. The skeleton of M is approximated by uniformly displacing M along its
surface normals in both directions and identifying self intersection points. Then we identify
the region on M where its vertex normals, scaled to a user-specified maximal length, enter
both femur and ilium, without reaching the skeleton of M first (Fig. 4b and 4c). This region
is displaced onto each femur and ilium in vertex normal direction. Each displaced patch
is merged into the respective surface mesh by removing all original triangles on the mesh
which are surrounded by the patch boundary, and connecting the boundaries of remaining
the mesh and the patch. Fig. 4d and 4e show the resulting surfaces.

As a result, we obtain a bijective mapping of the displaced (continuous) patches that sat-
isfies the non-intersection condition. Thereby shared profiles between the modified surface
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(c) (f) (i) (l)

Figure 4: Construction of shared profiles. (a) Surface models of proximal femur and right
ilium. (b) Mid surface (yellow) in region of interest, with normals entering both femur and
illium. (c) Extracted region on mid surface (red). (d,e) Surface meshes with integrated dis-
placed region (red). (f) Vectors coupling femoral head and acetabulum. (g) Surface models
of liver and nearby ribs. (h) Mid surface in region of interest. (i) Coupling vectors between
liver and ribs. (j) Surface models of skull and mandibular bone. (k) Mid surface. (l) Coupling
vectors between mandibular bone and skull.

meshes’ vertices are defined, as shown in Fig. 4f and 4g. We let the shared profiles reach into
the surfaces until they meet the skeleton of M, or the inner skeleton of the respective surface,
or they reach a user-specified maximal length. Fig. 4g-4i show a liver model and a model
of surrounding ribs which are connected. Three regions with shared profiles are identified
here. As another example, Fig. 4j-4l shows models of a skull and a mandibular bone with
shared profiles. Multiple regions are coupled here, as well.

5 Results

We computed segmentations of the femoral head and acetabulum in 50 CT images with 5mm
slice thickness. Manually defined gold standard segmentations of the pelvis and the prox-
imal femur were availible for this data. Surface models were initialized with a composite
SSM as described in Kainmueller et al. [Sept. 2009].

Shared profiles were established as proposed in Section 4.3. A graph was then con-
structed as in Li et al. [2006], containing these shared profiles as well as traditional single
profiles in non-adjacent regions of the surfaces, as in Seim et al. [2008]. We used intensity
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Figure 5: Black: coupled optimization. White: Gold standard. (a) Red: Single femur op-
timization. Coupled optimization prevents mis-adaptation of the femoral head to features
inside the pelvis. (b,c) Red: Single pelvis optimization, 20mm profiles. Minimum distance
constraints prevent mis-adaptations in coupled optimitzation.

Initialization Single OPT Coupled OPT
ad md ad md ad md

F 1.7 (0.6) 4.5 (1.5) 1.7 (1.0) 5.8 (2.1) 1.1 (0.5) 4.3 (1.4)
A 1.4 (0.5) 5.4 (1.9) 0.9 (0.5) 4.7 (2.4) 0.8 (0.5) 4.7 (2.2)

Table 1: Initialization, single, and coupled optimization results for femoral head (F) and
acetabulum (A). All entries in mm. Bold: Average error metrics on 50 CT images. In brackets:
Standard deviation.

and gradient thresholding and in the image data to derive a cost function on the profiles.
Costs are low at sample points where intensities change more than a gradient threshold from
bright to dark within a certain intensity window. Costs are high everywhere else. The exact
definition of the cost function can be found in Kainmueller et al. [Sept. 2009]. We applied the
graph cut algorithm proposed in Boykov and Kolmogorov [2004] to find optimal surfaces.
For comparison, we optimized both surfaces individually (using the respective part of the
same graph), without any coupling by shared profiles.

The focus of our evaluation was to determine how accurate the automatic segmentations
are in the area of the right hip joint. As accuracy measures we computed the average surface
distance (ad) and maximum surface distance (md) of the right acetabulum and femoral head
from the respective gold standard surface. Each structure is defined as a set of vertex num-
bers on the gold standard meshes. Thus we could compute the distance from these vertices
to the respective automatic segmentation. Note that ad and md are assymmetric measures.
Table 1 lists the average error metrics for the femoral head and acetabulum. Results are
given for the initialized surfaces, the single-object optimizations, and the multi-object opti-
mizations on coupled surfaces.

6 Discussion

We proposed a method for coupling arbitrary adjacent surfaces by means of shared profiles.
Two surfaces are guaranteed not to overlap if deformed along the shared profiles. Optimal
graph searching on the graph obtained from the coupled surfaces produced very accurate
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segmentations of the femoral head and acetabulum in 50 ct images of the hip joint.
With the composite SSM, situations as in 3c (bottom), i.e. the problem of unmapped,

overlapping regions did not occur for our 50 test cases. However, in case that the initial
composite SSM segmentations show such an overlap (which is unlikely, but possible), it is
not guaranteed that the overlapping regions can be completely mapped.

For the femur, coupled optimization performs significantly better than single optimiza-
tion (ad 1.1 versus 1.7mm). In fact, single optimization does not improve the initial seg-
mentation at all, as the femur adapts to image features inside the pelvis, see Fig. 5a. This
is prevented by the distance constraints in coupled optimization. As for the pelvis, coupled
optimization is slightly better than single optimization (ad 0.8 versus 0.9mm). Although
most individual results are similar, coupled optimization outperforms single optimization
in a few cases due to the distance constraints imposed by the shared intensity profiles, see
Fig. 5b and 5c.
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